流批一体技术简介
本文由阿里云 Flink 团队苏轩楠老师撰写,旨在向 Flink 用户整体介绍 Flink 流批一体的技术和挑战。
从数据存储到分析:构建高效开源数据湖仓解决方案
今年开源大数据迈向湖仓一体(Lake House)时代,重点介绍Open Lake解决方案。该方案基于云原生架构,兼容开源生态,提供开箱即用的数据湖仓产品。其核心优势在于统一数据管理和存储,支持实时与批处理分析,打破多计算产品的数据壁垒。通过阿里云的Data Lake Formation和Apache Paimon等技术,用户可高效搭建、管理并分析大规模数据,实现BI和AI融合,满足多样化数据分析需求。
Flink技术源码解析(一):Flink概述与源码研读准备
一、前言
Apache Flink作为一款高吞吐量、低延迟的针对流数据和批数据的分布式实时处理引擎,是当前实时处理领域的一颗炙手可热的新星。关于Flink与其它主流实时大数据处理引擎Storm、Spark Streaming的不同与优势,可参考https://blog.csdn.net/cm_chenmin/article/details/53072498。
出于技术人对技术本能的好奇与冲动,
带你理解并使用flink中的WaterMark机制
提问:你了解事件的乱序吗?乱序是怎么产生的呢?在flink流处理中是以什么事件类型判定乱序的呢?
当一条一条的数据从产生到经过消息队列传输,然后Flink接受后处理,这个流程中数据都是按照数据产生的先后顺序在flink中处理的,这时候就是有序的数据流。
飞书深诺基于Flink+Hudi+Hologres的实时数据湖建设实践
通过对各个业务线实时需求的调研了解到,当前实时数据处理场景是各个业务线基于Java服务独自处理的。各个业务线实时能力不能复用且存在计算资源的扩展性问题,而且实时处理的时效已不能满足业务需求。鉴于当前大数据团队数据架构主要解决离线场景,无法承接更多实时业务,因此我们需要重新设计整合,从架构合理性,复用性以及开发运维成本出发,建设一套通用的大数据实时数仓链路。本次实时数仓建设将以游戏运营业务为典型场景进行方案设计,综合业务时效性、资源成本和数仓开发运维成本等考虑,我们最终决定基于Flink + Hudi + Hologres来构建阿里云云原生实时湖仓,并在此文中探讨实时数据架构的具体落地实践。
从Lambda架构到Kappa架构再到?浅谈未来数仓架构设计~
Linked大佬Jay Kreps曾发表过一篇博客,简单阐述了他对数据仓库架构设计的一些想法。从Lambda架构的缺点到提出基于实时数据流的Kappa架构。本文将在Kappa架构基础上,进一步谈数仓架构设计。
现代实时数仓和重要性已经越来越高,离线数仓积累的历史数据又很难被抛弃。采用新型的数仓架构,融合实时数仓和离线数仓的优点是一个值得讨论的话题。本文结合ECS的设计模式,探讨了如何设计了一套全新的混合数仓架构。