实时计算 Flink版

首页 标签 实时计算 Flink版
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
Flink 四大基石之 Checkpoint 使用详解
Flink 的 Checkpoint 机制通过定期插入 Barrier 将数据流切分并进行快照,确保故障时能从最近的 Checkpoint 恢复,保障数据一致性。Checkpoint 分为精确一次和至少一次两种语义,前者确保每个数据仅处理一次,后者允许重复处理但不会丢失数据。此外,Flink 提供多种重启策略,如固定延迟、失败率和无重启策略,以应对不同场景。SavePoint 是手动触发的 Checkpoint,用于作业升级和迁移。Checkpoint 执行流程包括 Barrier 注入、算子状态快照、Barrier 对齐和完成 Checkpoint。
Flink 四大基石之窗口(Window)使用详解
在流处理场景中,窗口(Window)用于将无限数据流切分成有限大小的“块”,以便进行计算。Flink 提供了多种窗口类型,如时间窗口(滚动、滑动、会话)和计数窗口,通过窗口大小、滑动步长和偏移量等属性控制数据切分。窗口函数包括增量聚合函数、全窗口函数和ProcessWindowFunction,支持灵活的数据处理。应用案例展示了如何使用窗口进行实时流量统计和电商销售分析。
|
4天前
|
实时数仓 Hologres 产品介绍:一体化实时湖仓平台
本次方案的主题是实时数仓 Hologres 产品介绍:一体化实时湖仓平台,介绍了 Hologres 湖仓存储一体,多模式计算一体、分析服务一体和 Data+AI 一体四方面一体化场景,并对其运维监控方面及客户案例进行一定讲解。 1. Hologres :面向未来的一体化实时湖仓 2. 运维监控 3. 客户案例 4. 总结
|
4天前
|
Dynamic Table快速入门
本次分享的主题是Dynamic Table快速入门,由Hologres PD 梅酱分享。今天的分享分为三个部分。首先,第一部分为Table的基本概念;第二部分进行Table的实操;第三部分为一些使用Table的建议和最佳实践。
|
4天前
|
2024FFA-分论坛-核心技术专场1
本文整理自阿里云技术专家,Apache Flink Committer 兰兆千老师在 2024FFA-分论坛-核心技术专场1的分享。内容主要为以下三部分: 1、存算分离架构介绍 2、状态存储内核ForSt 3、工作进展&未来展望
|
4天前
|
Hologres OLAP场景核心能力介绍-2024实时数仓Hologres线上公开课02
本次分享由Hologres产品经理赵红梅(梅酱)介绍Hologres在OLAP场景中的核心能力。内容涵盖OLAP场景的痛点、Hologres的核心优势及其解决方法,包括实时数仓分析、湖仓一体加速、丰富的索引和查询性能优化等。此外,还介绍了Hologres在兼容PG生态、支持多种BI工具以及高级企业级功能如计算组隔离和serverless computing等方面的优势。最后通过小红书和乐元素两个典型客户案例,展示了Hologres在实际应用中的显著效益,如运维成本降低、查询性能提升及成本节省等。
|
4天前
|
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
Flink 四大基石之 Time (时间语义) 的使用详解
Flink 中的时间分为三类:Event Time(事件发生时间)、Ingestion Time(数据进入系统时间)和 Processing Time(数据处理时间)。Event Time 通过嵌入事件中的时间戳准确反映数据顺序,支持复杂窗口操作。Watermark 机制用于处理 Event Time,确保数据完整性并触发窗口计算。Flink 还提供了多种迟到数据处理方式,如默认丢弃、侧输出流和允许延迟处理,以应对不同场景需求。掌握这些时间语义对编写高效、准确的 Flink 应用至关重要。
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
免费试用