构建AI智能体:六十、特征工程行业实践录:金融、电商、医疗的智能化转型
本文通过金融风控、电商推荐和医疗诊断三个行业案例,系统阐述了特征工程的实践价值与技术方法。在金融领域,通过构建稳定性评分等特征,将贷款审批坏账率从8.2%显著降低;电商行业通过实时兴趣向量等特征,使推荐点击率提升3倍;医疗领域则利用病变严重度评分等特征,将筛查效率提升5倍。研究揭示了特征工程作为连接业务需求与技术实现的关键桥梁,其核心在于将原始数据转化为机器可理解的业务语言。
PyCausalSim:基于模拟的因果发现的Python框架
PyCausalSim 是一个基于模拟的 Python 因果推断框架,用于从数据中挖掘和验证因果关系。它支持因果结构发现、反事实模拟、A/B测试分析、营销归因与Uplift建模,帮助识别真实驱动因素,超越相关性分析,为业务决策提供可靠因果证据。
构建AI智能体:五十九、特征工程:数据预处理到特征创造的系统性方法
摘要:特征工程是将原始数据转化为机器学习模型可理解格式的关键步骤,类比于食材烹饪过程。其核心包括数据清洗(处理缺失值、异常值)、特征转换(标准化、分箱)、特征创造和特征选择。通过员工离职预测案例,展示了如何通过单变量分析(满意度、工作时长分布)、多变量分析(满意度与绩效关系)和业务分析(部门薪资组合)构建有效特征。特征工程能提升模型性能(如使用简单模型获得好效果)、增强可解释性(明确风险因素)并减少数据需求。
2025中国AI数字人技术类厂商评析与重点企业选择指南
数字人企业正乘科技浪潮崛起,资本与政策双轮驱动下迎来黄金发展期。像衍科技、阿里、百度等领军者依托技术革新与场景落地,推动数字人在金融、教育、医疗等领域规模化应用,实现从“虚拟形象”到“智能服务”的跨越,开启虚实融合的产业新纪元。
SAPO:让强化学习告别“硬剪切”
SAPO提出一种稳定高效的大语言模型强化学习方法,通过平滑门控替代硬剪切,解决GRPO/GSPO梯度丢失与不稳定问题。其连续信任域、序列级一致性及token级自适应设计,显著提升训练稳定性与样本效率,适用于dense/MoE模型,在数学、代码、逻辑等多任务上表现优越。
知识蒸馏
知识蒸馏是一种模型压缩技术,通过让小模型(学生)模仿大模型(教师)的输出或中间特征,实现性能逼近甚至超越。核心方法包括基于软标签的Hinton蒸馏、带温度的softmax平滑分布、以及利用隐藏层特征的特征蒸馏。分为黑盒(仅用输出)与白盒(访问内部)两种模式,广泛用于加速推理与提升小模型泛化能力。(238字)
预训练技巧
预训练是大模型的核心基础,涵盖混合精度、分布式训练、ZeRO优化、FlashAttention等关键技术,通过高效计算与显存优化,实现大规模模型的快速稳定训练。
强化学习
强化学习(RL)是一种通过智能体与环境交互,以最大化累积奖励为目标的学习方法。核心包括状态、动作、奖励、策略与价值函数,依赖试错和延迟奖励机制。常见算法如Q-learning、PPO、DPO等,广泛应用于游戏、机器人及大模型训练。结合人类反馈(RLHF),可实现对齐人类偏好的智能行为优化。(239字)