Tablestore Timestream:为海量时序数据存储设计的全新数据模型
引言
随着近几年物联网的发展,时序数据迎来了一个不小的爆发。为了存储这些时序数据,各大企业纷纷推出自己的时序数据库。Tablestore作为阿里云自研的NoSQL多模型数据库,能够提供海量结构化数据存储以及快速的查询和分析服务,其在存储模型、数据规模以及写入和查询能力上,都能很好的满足时序数据的场景,另外已经支持很多时序类业务,例如监控类的云监控,事件类的阿里健康药品追踪以及快递包裹轨迹等。
阿里云ACP认证考试细则须知与考题内容学习方法分享
阿里云大数据专业认证(ACP 级-Alibaba Cloud CertificationProfessional)是面向使用阿里云大数据产品的架构、开发、运维类人员的专业技术认证,主要涉及阿里云大数据类的几款核心产品,包括大数据计算服务MaxCompute、数据工场 DataWorks(原大数据开发套件 DataIDE)、数据集成、QuickBI、机器学习 PAI 等。
基于 MySQL + Tablestore 分层存储架构的大规模订单系统实践-架构篇
背景订单系统存在于各行各业,如电商订单、银行流水、运营商话费账单等,是一个非常广泛、通用的系统。对于这类系统,在过去十几年发展中已经形成了经典的做法。但是随着互联网的发展,以及各企业对数据的重视,需要存储和持久化的订单量越来越大,数据的重视程度与数据规模的膨胀带来了新的挑战。首先,订单量对于数据的存储、持久化、访问带来了挑战,这不仅增加了开发面对的困难,也为系统的运维带来了挑战。其次,随着大数据技
车联网场景下海量车辆状态数据存储实践
随着通信技术、计算机技术的不断发展,移动通信正在从人与人(H2H)向人与物(H2M)以及物与物(M2M)的方向发展,“万物互联”的概念正在逐步覆盖到各行各业中,例如智能家居、智能农业、智能交通、智能物流等领域。目前,车联网技术已经先行一步,在行车安全、交通管理、生活服务等方面得到充分应用。
车联网技术包括了车辆终端、云端、无线通信等方面。车辆终端实时产生大量车辆状态数