实时计算 Flink版

首页 标签 实时计算 Flink版
使用 Kafka 和 Flink 构建实时数据处理系统
引言 在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。
阿里巴巴飞天大数据架构体系与Hadoop生态系统
先说Hadoop 什么是Hadoop? Hadoop是一个开源、高可靠、可扩展的分布式大数据计算框架系统,主要用来解决海量数据的存储、分析、分布式资源调度等。Hadoop最大的优点就是能够提供并行计算,充分利用集群的威力进行高速运算和存储。
趣头条基于 Flink 的实时平台建设实践
本文由趣头条实时平台负责人席建刚分享趣头条实时平台的建设,整理者叶里君。文章将从平台的架构、Flink 现状,Flink 应用以及未来计划四部分分享。
月活用户达7.55亿,阿里淘系如何在后流量时代引爆用户增长? | 9月17号栖夜读
今天的首篇文章,讲述了:当下,流量为王的时代慢慢走远,获取用户的难度越来越大,成本越来越高。阿里巴巴是如何用最少的成本获取流量,真正将用户留存下来?如何用精益化方式提升转化,把现有流量快速变现?如何打破流量瓶颈,实现持续增长?又是如何发掘不同用户群的核心需求,围绕核心需求打造用户持续增长方法论的呢?
Flink BucketingSink 源码分析
0x1 摘要 BucketingSink类提供了非常完美的功能支持数据落HDFS,在实际业务中不建议自己去实现,直接采用此类可以避免一些坑。注:此文基于Flink 1.6.3 版本源码。 0x2 BucketingSink 类结构分析 我们关注RichSinkFunction、Checkpoint.
阿里巴巴高级技术专家章剑锋:大数据发展的 8 个要点
章剑锋(简锋),开源界老兵,Apache Member,曾就职于 Hortonworks,目前在阿里巴巴计算平台事业部任高级技术专家,并同时担任 Apache Tez、Livy 、Zeppelin 三个开源项目的 PMC ,以及 Apache Pig 的 Committer。
深入了解 Flink 网络栈(二):监控、指标和处理背压
在之前的文章中,我们从高级抽象到底层细节各个层面全面介绍了 Flink 网络栈的工作机制。作为这一系列的第二篇文章,本文将在第一篇的基础上更进一步,主要探讨如何监视与网络相关的指标,从而识别背压等因素带来的影响,或找出吞吐量和延迟的瓶颈所在。
运维场景下的实时计算应用
案例与解决方案汇总页:阿里云实时计算产品案例&解决方案汇总 运维场景主要有下面几个需求: 整体系统运行指标计算与可视化,可参考:数据仓库介绍与实时数仓案例 问题排查与全链路DEBUG,可参考:【阿里内部应用】基于Blink构建搜索全链路debug系统快速定位搜索问题、【阿里内部应用】基于Bli.
免费试用