实时计算 Flink版

首页 标签 实时计算 Flink版
Apache Flink 漫谈系列(04) - State
实际问题 在流计算场景中,数据会源源不断的流入Apache Flink系统,每条数据进入Apache Flink系统都会触发计算。如果我们想进行一个Count聚合计算,那么每次触发计算是将历史上所有流入的数据重新新计算一次,还是每次计算都是在上一次计算结果之上进行增量计算呢?答案是肯定的,Apache Flink是基于上一次的计算结果进行增量计算的。
Apache Flink 漫谈系列(01) - 序
本人 孙金城,淘宝花名"金竹",阿里巴巴高级技术专家,Apache Flink Committer。目前就职于阿里巴巴计算平台事业部,自2015年以来一直投入于基于Apache Flink的设计研发工作。
Flink SQL 功能解密系列 —— 数据去重的技巧和思考
去重逻辑在业务处理中使用广泛,大致可以分两类:DISTINCT去重和FIRST_VALUE主键去重,两者的区别是DISTINCT去重是对整行数据进行去重,比如tt里面数据可能会有重复,我们要去掉重复的数据;FIRST_VALUE是根据主键进行去重,可以看成是一种业务层面的去重,但是真实的业务场景使用也很普遍,比如一个用户有多次点击,业务上只需要取第一条。
Flink 原理与实现:内存管理
如今,大数据领域的开源框架(Hadoop,Spark,Storm)都使用的 JVM,当然也包括 Flink。基于 JVM 的数据分析引擎都需要面对将大量数据存到内存中,这就不得不面对 JVM 存在的几个问题: 1. Java 对象存储密度低。一个只包含 boolean 属性的对象占用了16个字节内存:对象头占了8个,boolean 属性占了1个,对齐填充占了7个。而实际上只需要一个bit(1
使用 Kafka 和 Flink 构建实时数据处理系统
引言 在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。
阿里巴巴飞天大数据架构体系与Hadoop生态系统
先说Hadoop 什么是Hadoop? Hadoop是一个开源、高可靠、可扩展的分布式大数据计算框架系统,主要用来解决海量数据的存储、分析、分布式资源调度等。Hadoop最大的优点就是能够提供并行计算,充分利用集群的威力进行高速运算和存储。
免费试用