基于Flink的实时日志分析系统实践

简介:

前言

目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈。 多样化的数据、复杂的业务分析需求、系统稳定性、数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题。2018 年线上线下融合已成大势,“新零售”的战略已经开始实施,其本质是数据驱动,为消费者提供更好的服务, 日志分析系统作为数据分析的第一环节,为数据运营打下了坚实基础。

数据分析流程与架构介绍

业务背景

电商线上、线下运营人员,对数据分析需求多样化、时效性要求越来越高。目前实时日志分析系统每天处理数十亿条流量日志,不仅需要保证:低延迟、数据不丢失等要求,还要面对复杂的分析计算逻辑,这些都给系统建设提出了高标准、高要求。
  • 数据来源丰富:线上线下流量数据、销售数据、客服数据等
  • 业务需求多样: 支撑营销、采购、财务、供应链商户等数据需求

流程与架构

实时日志分析系统底层数据处理分为三个环节:采集、清洗、指标计算。
  • 采集模块:收集各数据源日志,通过 Flume 实时发送 Kafka。
  • 清洗模块:实时接收日志数据,进行数据处理、转换,清洗任务基于Flink实现,目前每天处理十亿级别流量数据,经过清洗任务处理后的结构化数据将再次发送到 Kafka 队列
  • 指标计算:从 Kafka 实时接收结构化流量数据,实时计算相关指标, 指标计算任务是基于Flink的任务,其优点是:低延时、高吞吐、支持标准 SQL、开发简单、exactly-once语义、支持窗函数计算等。
指标计算后数据主要存储到 HBase、Druid 等存储引擎,业务系统读取实时计算好的指标数据,为运营人员提供数据分析服务。

Flink在指标分析实践

Flink介绍

众所周知 Flink 是流式数据处理框架,而 Flink借鉴流处理的理念实现的实时算框架,通过将数据按时间顺序处理,实际应用中根据延迟要求合理设置聚合窗口。
Flink支持多种数据源:Kafka、MQ、SLS、Datahub 等,原生支持写入到 MQ、OTS、常见关系数据库等存储介质。
对比 Storm、Spark,Flink的实时架构,延时更低,吞吐量更高,支持 SQL,与 上下游消息队列、数据库等存储介质支持的更好,开发方便,并且支持 Window 特性,能支持复杂的窗口函数计算。

NDCG指标分析

Normalized Discounted Cumulative Gain,即 NDCG,常用作搜索排序的评价指标,理想情况下排序越靠前的搜索结果,点击概率越大,即得分越高 (gain)。CG = 排序结果的得分求和, discounted 是根据排名,对每个结果得分 * 排名权重,权重 = 1/ log(1 + 排名) , 排名越靠前的权重越高。首先我们计算理想 DCG(称之为 IDCG), 再根据用户点击结果, 计算真实的 DCG, NDCG = DCG / IDCG,值越接近 1, 则代表搜索结果越好。DCG 计算公式如下:
IDCG是理想情况下的DCG,即对于一个查询语句和p来说,DCG的最大值。公式如下:
其中|REL|表示,文档按照相关性从大到小的顺序排序,取前p个文档组成的集合。也就是按照最优的方式对文档进行排序。
由于每个查询语句所能检索到的结果文档集合长度不一,p值的不同会对DCG的计算有较大的影响。所以不能对不同查询语句的DCG进行求平均,需要进行归一化处理。nDCG就是用IDCG进行归一化处理,表示当前DCG比IDCG还差多大的距离。公式如下: 
这样每个查询语句的nDCGpnDCGp就是从0到1,不同查询语句之间就可以做比较,就可以求多个查询语句的平均nDCGpnDCGp。  NDCG@10、NDCG@20分别表示求p为10和20的时候的nDCG。

NDCG计算方案设计

通过统计搜索行为时间跨度,86% 的搜索行为在 5 分钟内完成、90% 的在 10 分钟内完成(从搜索开始到最后一次点击结果列表时间间隔),通过分析比较, NDCG 实时计算时间范围设定在 15 分钟。这就提出了两个计算难点:
  • 时间窗口计算:每一次都是对前 15 分钟数据的整体分析
  • 去重: 时间窗口内保证一次搜索只计算一次
最终我们选择了Flink框架,利用其 Window 特性,实现Sliding Time Window窗口计算。时间窗口为 15 分钟,步长 5 分钟,意味着每 5 分钟计算一次。每次计算,只对在区间[15 分钟前, 10 分钟前]发起的搜索行为进行 NDCG 计算,这样就不会造成重复计算。
按照方案开发后,线上测试很快发现问题,保存 15 分钟的数据消耗资源太多,通过分析发现:搜索数据仅占流量数据很小一部分, 清洗任务在 Kafka 单独存储一份搜索数据,NDCG 计算订阅新的搜索数据,大大减小了资源消耗

性能与数据安全保障

性能保障

容量预估与扩展

容量预估不是一个静态工作
  • 流量日志在不断增长,而系统处理能力是有限的
  • 大促活动会造成额外的数据高峰。
针对这些情况, 提前根据业务增长情况进行扩容是最重要的保障手段。扩容依赖系统的水平扩展能力,利用Flink
支持自动扩容的特点,通过调大Kafka Topic 分区数量,模拟数据峰值实现自动调优分配Flink处理节点和并发数等参数调节,保障数据处理性能满足业务需求。

多维分析计算优化

以 NDCG 指标为例子,目前支持 4 个维度组合的计算:大区、城市、渠道、搜索词,为了支持 4 个维度任意组合,需要进行 15 次计算,在 HBase 进行 15 次存储更新操作。如下图所示。
目前时间粒度是可以支持杪,分钟,小时,天,周,月,任务数、存储都要翻几倍。此时,一个高性能的 OLAP 计算引擎,来提升指标分析效率,变得更加迫切。
Flink支持 sum、max、min、avg、count、distinct count 等常规聚合计算,支持从 Kafka 实时数据接入,其列式存储结构提升数据检索效率, 通过数据预聚合提升了计算效率。
经过方案预研以及性能测试,Druid 大大提升了 NDCG 这类指标的计算分析效率,让指标分析任务变得更轻量级,指标多维分析能力交给 Druid 来解决。

数据保障

保障数据不丢失

Flink数据任务可能会需要重启进行发布操作,保障数据在一定时间内不丢失,尤为重要。分解下来需要保证两点:
  • 数据源保证数据不丢失
  • 数据任务保证数据被处理
第一点,Kafka 通过数据落磁盘、备份机制保证数据不丢失;
第二点,Flink 提供了 Checkpoint 机制,保障数据必须被处理切处理一次(exactly-once 语义)。
Flink提供了 checkpoint备份机制(基于state),任务失败或重启后,可以利用 checkpoint 数据进行恢复,保障数据被处理完成, state 日志会把所有数据存储异步上传 HDFS。Flink state 针对 Kafka 进行了优化,数据源保存了消费Kafka的偏移量(offset)。 任务恢复的时候,根据 offset 重新读取 Kafka 数据即可。

exactly-once 语义保障

对于销售类数据,不仅要保证数据被处理,还需要保证数据仅被处理一次,涉及销售财务指标数据必须 100% 准确。
第一种方案:Labmda 架构 +  Redis 去重
  • 实时去重:一个订单被计算后,将订单号写入 Redis,通过比对订单号,保证数据不重复处理。
  • 离线更新:每天凌晨重新计算销售指标,更新前一天指标数据
第二种方案:MPP + 主键
  • 使用场景:适于外部使用场景,外部系统从 Mpp 数据查询、分析数据
  • 技术方案:MPP 选用 PG CITUS 数据库,在 MPP 数据库建表,对订单号等唯一性字段设为主键。

未来架构演进与优化

目前整个底层处理系统都是基于业界的开源框架,系统还远远谈不上完美,尤其是做底层数据是个比较细致、辛苦的工作,数据质量问题频发,由于没有监控系统,经常是被动发现、解决问题。由于新业务长势喜人,数据清洗逻辑变更是家常便饭,代码发布频繁。
在实践过程中,对系统进行架构优化设计,可以增加两个模块。
  • 数据质量监控: 通过配置质量监控规则, 对实时、离线数据进行规则校验,支持:抽样校验、全量校验两种方式, 对数据异常通过告警方式及时通知开发人员。
  • 数据清洗规则配置系统:让清洗逻辑抽象成可配置的规则,通过定义变更清晰规则,实现数据清洗逻辑的变更,这里的难点是规则抽象化,经过技术预研,初步确定使用 Drools、Groovy 两种方式配合实现清洗规则配置化。

总结与展望

日志处理分析系统作为数据挖掘、BI 分析等高阶应用的幕后支撑, 起着承上启下的作用, 尤其对于业务线多、大数据量场景,没有系统化平台化的支撑,大数据终将是一句空话。我相信不止是算法模型,底层的数据质量、时效性、系统稳定性,都将成为智慧零售的胜负手。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
WGLOG日志管理系统是怎么收集日志的
WGLOG通过部署Agent客户端采集日志,Agent持续收集指定日志文件并上报Server,Server负责展示与分析。Agent与Server需保持相同版本。官网下载地址:www.wgstart.com
|
3月前
|
Prometheus 监控 Cloud Native
基于docker搭建监控系统&日志收集
Prometheus 是一款由 SoundCloud 开发的开源监控报警系统及时序数据库(TSDB),支持多维数据模型和灵活查询语言,适用于大规模集群监控。它通过 HTTP 拉取数据,支持服务发现、多种图表展示(如 Grafana),并可结合 Loki 实现日志聚合。本文介绍其架构、部署及与 Docker 集成的监控方案。
391 122
基于docker搭建监控系统&日志收集
|
3月前
|
SQL 人工智能 监控
SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
742 57
|
存储 运维 开发工具
警惕日志采集失败的 6 大经典雷区:从本地管理反模式到 LoongCollector 标准实践
本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。
1096 21
|
6月前
|
监控 API 开发工具
HarmonyOS Next的HiLog日志系统完全指南:从入门到精通
本文深入解析HarmonyOS Next的HiLog日志系统,涵盖日志级别、核心API、隐私保护与高级回调功能,助你从入门到精通掌握这一重要开发工具。
389 1
|
3月前
|
监控 安全 搜索推荐
使用EventLog Analyzer进行日志取证分析
EventLog Analyzer助力企业通过集中采集、归档与分析系统日志及syslog,快速构建“数字犯罪现场”,精准追溯安全事件根源。其强大搜索功能可秒级定位入侵时间、人员与路径,生成合规与取证报表,确保日志安全防篡改,大幅提升调查效率,为执法提供有力证据支持。
163 0
|
3月前
|
Ubuntu
在Ubuntu系统上设置syslog日志轮替与大小限制
请注意,在修改任何系统级别配置之前,请务必备份相应得原始档案并理解每项变更可能带来得影响。
331 2
|
6月前
|
资源调度 Kubernetes 流计算
Flink在B站的大规模云原生实践
本文基于哔哩哔哩资深开发工程师丁国涛在Flink Forward Asia 2024云原生专场的分享,围绕Flink On K8S的实践展开。内容涵盖五个部分:背景介绍、功能及稳定性优化、性能优化、运维优化和未来展望。文章详细分析了从YARN迁移到K8S的优势与挑战,包括资源池统一、环境一致性改进及隔离性提升,并针对镜像优化、Pod异常处理、启动速度优化等问题提出解决方案。此外,还探讨了多机房容灾、负载均衡及潮汐混部等未来发展方向,为Flink云原生化提供了全面的技术参考。
381 9
Flink在B站的大规模云原生实践
|
5月前
|
监控 安全 NoSQL
【DevOps】Logstash详解:高效日志管理与分析工具
Logstash是ELK Stack核心组件之一,具备强大的日志收集、处理与转发能力。它支持多种数据来源,提供灵活的过滤、转换机制,并可通过插件扩展功能,广泛应用于系统日志分析、性能优化及安全合规等领域,是现代日志管理的关键工具。
802 0
|
7月前
|
SQL 存储 NoSQL
Flink x Paimon 在抖音集团生活服务的落地实践
本文整理自抖音集团数据工程师陆魏与流式计算工程冯向宇在Flink Forward Asia 2024的分享,聚焦抖音生活服务业务中的实时数仓技术演变及Paimon湖仓实践。文章分为三部分:背景及现状、Paimon湖仓实践与技术优化。通过引入Paimon,解决了传统实时数仓开发效率低、资源浪费、稳定性差等问题,显著提升了开发运维效率、节省资源并增强了任务稳定性。同时,文中详细探讨了Paimon在维表实践、宽表建设、标签变更检测等场景的应用,并介绍了其核心技术优化与未来规划。
706 10
Flink x Paimon 在抖音集团生活服务的落地实践

热门文章

最新文章

相关产品

  • 实时计算 Flink版