基于Tablestore 实现海量订单日志数据存储
从最早的互联网高速发展、到移动互联网的爆发式增长,再到今天的产业互联网、物联网的快速崛起,各种各样新应用、新系统产生了众多订单类型的需求,比如电商购物订单、银行流水、运营商话费账单、外卖订单、设备信息等,产生的数据种类和数据量越来越多;其中订单系统就是一个非常广泛、通用的系统。而随着数据规模的快速增长、大数据技术的发展、运营水平的不断提高,包括数据消费的能力要求越来越高,这对支撑订单系统的数据库设计、存储系统也提出了更多的要求。在新的需求下,传统的经典架构面临着诸多挑战,需要进一步思考架构优化,以更好支撑业务发展。
流计算引擎数据一致性的本质
本篇文章从流计算的本质出发,重点分析流计算领域中数据处理的一致性问题,同时对一致性问题进行简单的形式化定义,提供一个一窥当下流计算引擎发展脉络的视角,让大家对流计算引擎的认识更为深入,为可能的流计算技术选型提供一些参考。
TableStore Timeline:轻松构建千万级IM和Feed流系统
在文章《现代IM系统中消息推送和存储架构的实现》中介绍了一种适用于IM的消息存储和推送模型Timeline,在本篇文章中,会扩展Timeline模型到IM和Feed流系统中,并且提供成熟的LIB实现。用户基于TableStore-Timeline LIB可轻松实现千万级的IM和Feed流系统。