云消息队列 Kafka 版

首页 标签 云消息队列 Kafka 版
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
|
12月前
|
消息队列 MQ 性能大揭秘
本文对比了RabbitMQ、RocketMQ、Kafka和Pulsar四款消息队列的性能。RabbitMQ的吞吐量为万级,延迟在低吞吐量时可低至微秒级;高吞吐量下延迟显著上升。RocketMQ官方宣称支持万亿级吞吐量,实际测试中可达百万级TPS,延迟为毫秒级。Kafka和Pulsar的吞吐量均为百万级,Kafka延迟低至2ms,Pulsar延迟约10ms。总体来看,Kafka在高吞吐量下表现最优,而RabbitMQ适合对速度与可靠性要求高的低吞吐量场景。
深度解读 RocketMQ 存储机制
RocketMQ 实现了灵活的多分区和多副本机制,有效的避免了集群内单点故障对于整体服务可用性的影响。存储机制和高可用策略是 RocketMQ 稳定性的核心,社区上关于 RocketMQ 目前存储实现的分析与讨论一直是一个热议的话题。本文想从一个不一样的视角,着重于作者眼中的这种存储实现是在解决哪些复杂的问题,因此我从本文最初的版本中删去了冗杂的代码细节分析,由浅入深的分析存储机制的缺陷与优化方向。
Kafka 如何避免重复消费?
在Apache Kafka中,避免消息的重复消费是确保数据准确处理的关键。本文详细介绍了七种避免重复消费的方法:使用消费者组、幂等生产者、事务性生产者与消费者、手动提交偏移量、外部存储管理偏移量、去重逻辑及幂等消息处理逻辑。每种方法均有其优缺点,可根据实际需求选择合适方案。结合消费者组、手动提交偏移量和幂等处理逻辑通常是有效策略,而对于高一致性要求,则可考虑使用事务性消息。
免费试用