云消息队列 Kafka 版

首页 标签 云消息队列 Kafka 版
| |
来自: 云存储
基于 Tablestore 的大数据分析 Lambda 架构 - 云原生、弹性、流批一体
背景 Tablestore 启发自 Google 的 Bigtable 论文,从2009年开始,在阿里云的飞天团队内,开始萌发。经过10年的锤炼,如今在集团内,云上积累了各式各样的客户和场景。
MongoShake——基于MongoDB的跨数据中心的数据复制平台
MongoShake是基于MongoDB的通用型平台服务,作为数据连通的桥梁,打通各个闭环节点的通道。通过MongoShake的订阅消费,可以灵活对接以适应不同场景,例如日志订阅、数据中心同步、监控审计等。其中,集群数据同步作为核心应用场景,能够灵活实现灾备和多活的业务场景。
Kafka vs RocketMQ ——消息及时性对比
引言 在前几期的消息中间件对比中,我们为Kafka和RocketMQ设定了几个性能场景(单机系统可靠性、多Topic对性能稳定性的影响以及Topic数量对单机性能的影响),这些场景大都是以服务端的吞吐能力为对比焦点。这一期,我们将从客户端的角度出发,为大家带来Kafka和RocketMQ消息及时性
Flume+Kafka+Flink+Redis构建大数据实时处理系统:实时统计网站PV、UV展示
1.大数据处理的常用方法 大数据处理目前比较流行的是两种方法,一种是离线处理,一种是在线处理,基本处理架构如下: 在互联网应用中,不管是哪一种处理方式,其基本的数据来源都是日志数据,例如对于web应用来说,则可能是用户的访问日志、用户的点击日志等。
| |
来自: 云原生
开源技术精粹:深入解析阿里消息中间件RocketMQ
不久前,阿里宣布将开源RocketMQ 捐赠给 Apache 基金会,成为 Apache 孵化项目。想深入了解RocketMQ特性?想知道捐赠背后那些鲜为人知的故事?想看看业界主流MQ的性能对比?想知道商用版和开源版如何协同?云栖社区特别专题带你一睹详情。
日志收集之kafka篇
日志收集     日志收集包括服务器日志收集和埋码日志收集两种。     服务器日志主要是nginx、tomcat等产生的访问和业务日志。     埋码收集主要是某些服务器无法收集,需要在前端进行收集的数据。 收集流程     日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解
Kafka vs RocketMQ——Topic数量对单机性能的影响
上一期我们对比了三类消息产品(Kafka、RabbitMQ、RocketMQ)单纯发送小消息的性能,受到了程序猿们的广泛关注,其中大家对这种单纯的发送场景感到并不过瘾,因为没有任何一个网站的业务只有发送消息。本期,我们就来模拟一个真实的场景: 消息的发送和订阅一定是共存的 要支持多..
如何正确使用 Flink Connector?
本文主要分享 Flink connector 相关内容,分为以下三个部分的内容:第一部分会首先介绍一下 Flink Connector 有哪些。第二部分会重点介绍在生产环境中经常使用的 kafka connector 的基本的原理以及使用方法。第三部分答疑,对社区反馈的问题进行答疑。
免费试用