表格存储(TableStore)新功能Stream应用场景介绍
上面一篇我们介绍了表格存储新功能Stream, 下面我们展开说一些场景,看看有了Stream后,哪些我们常见的应用场景可以更高效的设计和实现。
直播用户行为分析和存储
场景描述
现在视频直播非常火热,假如我们使用TableStore记录用户的每一次进入房间和离开房间,房间内的操作记录等,并希望根据用户的最近的观看记录,更新直播推荐列表。
基于云上分布式NoSQL的海量气象数据存储和查询方案
气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点,每天产生的数据量常在几十TB到上百TB的规模,且在爆发性增长。如何存储和高效的查询这些气象数据越来越成为一个难题,本文针对气象领域中海量模式数据的存储和查询问题,分别介绍了传统方案和采用表格存储(TableStore)的方案,并对方案优缺点进行了一些总结。
TableStore:用户画像数据的存储和查询利器
TableStore是阿里云自研的在线数据平台,提供高可靠的存储,实时和丰富的查询功能,适用于结构化、半结构化的海量数据存储以及各种查询、分析。
用户画像数据是一种数据规模较大、数据结构复杂、查询种类多的数据,是公司差异化运营的基础,是打造“千人千面”、智能化的核心数据,帮产品找到最佳目标客户,对各种产品而言是一种很有价值的数据。
Lambda plus: 云上大数据解决方案
本文会简述大数据分析场景需要解决的技术挑战,讨论目前主流大数据架构模式及其发展。最后我们将介绍如何结合云上存储、计算组件,实现更优的通用大数据架构模式,以及该模式可以涵盖的典型数据处理场景。
大数据处理的挑战
现在已经有越来越多的行业和技术领域需求大数据分析系统,例如金融行业需要使用大数据系统结合VaR(value at risk)或者机器学习方案进行信贷风控,零售、餐饮行业需要大数据系统实现辅助销售决策,各种IOT场景需要大数据系统持续聚合和分析时序数据,各大科技公司需要建立大数据分析中台等等。
海量结构化数据的冷热分层一体化
## 前言
在大数据时代,数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产要素。随着业务和数据量的不断增长,性能和成本的权衡变成了大数据系统设计面临的关键挑战,这里甚至会导致原有系统进行架构改造或者数据迁移。所以在架构设计之初,我们就需要把整套架构的成本考虑进来,这对应的就是数据的分层存储和存储计算引擎的选择。Delta Lake是DataBricks公司推出的一种新型数据湖方案,围绕
教你如何免费使用一款免运维、无限容量的表存储服务
作者:李欣前言表格存储是一款用于存储海量非关系型(NoSQL)结构化数据的云原生表存储服务,提供 Schemaless 表结构设计、多元化索引以及数据更新实时订阅通道,支撑 PB 级数据存储的同时能提供丰富且灵活的数据查询、检索和分析能力。对接了各大主流开源计算引擎,能灵活的实现流批一体分析。通过阅读本文您将了解如何免费开通和使用表格存储服务,即刻拥有一个完全免运维、弹性、高性能、低成本的表存储服
如何在千亿行规模的表中快速检索数据
小数据量的数据可以用 MySQL 存储和查询,但是数据量变多后,比如超过 2000万,甚至超过200亿后数据该选择哪个系统才能实现存储和查询两不误?这篇文章会介绍如何存储千亿行数据,以及如何在其实进行查询,而且这些都是在一个系统里面就能做到。
基于Tablestore的一站式物联网存储解决方案-场景篇
## 前言
随着5G时代的来临,万物互联概念的兴起,物联网渐渐覆盖到了各行各业中。本系列文章将为大家介绍基于表格存储Tablestore的一站式物联网存储解决方案。以共享充电宝场景为例,实现物联网场景下元数据、时序数据存储,高并发更新、分析计算等需求。
## 背景
共享经济是近年来兴起的一种概念,共享概念极大方便了人们的生活。例如共享单车、共享车位、共享充电宝等等。这些场景里包含了大量的设备元