时序数据库

首页 标签 时序数据库
# 时序数据库 #
关注
1114内容
Flink 任务实时监控最佳实践(Prometheus + Grafana)打造企业级监控方案
我们都知道 Flink 任务是一个 7*24 小时不停运行的任务,所以对于任务的实时监控就显得尤为重要,因为任务运行的状态对于我们来说是一个黑盒,比如任务是否挂掉,是否存在反压,使用的内存,CPU 等情况我们是不知道的,虽然 Flink 的 UI 上面可以添加相关的 metrics 来查看,但是需要手动的一个一个添加,还是比较麻烦的,特别是在任务非常多的情况下.所以就需要有一种统一的监控方案来解决这个问题.Flink 本身提供了非常丰富的 Metric Reporters,比如 JMX InfluxDB Graphite Prometheus 等等,生产环境上用的比较多的是 InfluxDB
|
2月前
|
InfluxDB vs TDengine :2025 年了,谁家用的数据库还不能高效读缓存?
在工业互联网和物联网的大数据应用场景中,实时数据的写入和查询性能至关重要。如何快速获取最新设备状态并实时处理数据,直接影响到业务的高效运转。本文将深入分析 TDengine 和 InfluxDB 在缓存机制上的差异,帮助读者更好地理解这两款主流时序数据库在性能优化方面的优劣。
阿里云InfluxDB®教你玩转A股数据
阿里云InfluxDB®目前已经商业化,专注于处理高写入和查询负载的时序数据,用于存储大规模的时序数据并进行实时分析,包括来自DevOps监控、车联网、智慧交通、金融和IOT传感器数据采集。金融中股票交易具有高频和时间属性,非常符合InfluxDB的应用场景。
|
9月前
|
InfluxDB查询语言Flux详解
【4月更文挑战第30天】InfluxDB的查询语言Flux是种函数式、声明性的脚本语言,用于处理时序数据。它包含管道操作符(`|`)来串联函数,内置函数如`range`、`filter`和`mean`,以及变量和运算符支持。Flux适用于实时监控、趋势分析、数据可视化等场景,帮助用户实现灵活高效的查询操作。了解其基本概念和语法,能提升时序数据分析的效率。
|
8月前
|
时序数据库工具grafana里的$timeFilter查询1个小时内的数据如何写查询条件
【6月更文挑战第24天】时序数据库工具grafana里的$timeFilter查询1个小时内的数据如何写查询条件
|
7月前
|
Apache IoTDB进行IoT相关开发实践
IoTDB是专为物联网(IoT)设计的开源时间序列数据库,提供数据收集、存储、管理和分析。它支持高效的数据写入、查询,适用于处理大规模物联网数据,包括流数据、时间序列等。IoTDB采用轻量级架构,可与Hadoop和Spark集成,支持多种存储策略,确保数据安全和高可用性。此外,它还具有InfluxDB协议适配器,允许无缝迁移和兼容InfluxDB的API和查询语法,简化物联网项目的数据管理。随着物联网设备数量的快速增长,选择适合的数据库如IoTDB对于数据管理和分析至关重要。
APM开源方案-SigNoz初体验
最近在调研APM相关的开源方案,发现ATA上这类的文章比较少,准备搞一系列APM的“初体验”文章,那么先从最近github势头较热的SigNoz开始SigNoz简介SigNoz是一套开源APM方案,用于监控应用指标和链路,可以看到调用情况、异常、trace上下链路,也可以自己定义Dashboard。官方对于SigNoz介绍很全面了,不赘述啦。值得注意的是,SigNoz支持OpenTelemetry
免费试用