实时计算 Flink版

首页 标签 实时计算 Flink版
使用 Kafka 和 Flink 构建实时数据处理系统
引言 在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。
阿里巴巴飞天大数据架构体系与Hadoop生态系统
先说Hadoop 什么是Hadoop? Hadoop是一个开源、高可靠、可扩展的分布式大数据计算框架系统,主要用来解决海量数据的存储、分析、分布式资源调度等。Hadoop最大的优点就是能够提供并行计算,充分利用集群的威力进行高速运算和存储。
阿里巴巴高级技术专家章剑锋:大数据发展的 8 个要点
笔者从 2008 年开始工作到现在也有 11 个年头了,一路走来都在和数据打交道,做过大数据底层框架内核的开发(Hadoop,Pig,Tez,Spark,Livy),也做过上层大数据应用开发(写 MapReduce Job 做 ETL ,用 Hive 做 Ad hocquery,用 Tableau 做数据可视化,用 R 做数据分析)。
Streaming System 第一章:Streaming 101
简介 Streaming101起源于在O'really上发表的两篇博客,原文如下:https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102其中对流式计算的设计理念做了非常透彻的介绍。
Apache Flink 漫谈系列(15) - DataStream Connectors之Kafka
聊什么 为了满足本系列读者的需求,在完成《Apache Flink 漫谈系列(14) - DataStream Connectors》之前,我先介绍一下Kafka在Apache Flink中的使用。所以本篇以一个简单的示例,向大家介绍在Apache Flink中如何使用Kafka。
免费试用