ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
物联网数据库 IoTDB 解析
Apache IoTDB 是专为物联网时序数据打造的数据库,提供数据采集、存储、分析的功能。IoTDB 提供端云一体化的解决方案,在云端,提供高性能的数据读写以及丰富的查询能力,针对物联网场景定制高效的目录组织结构,并与 Apache Hadoop、Spark、Flink 等大数据系统无缝打通;在边缘端,提供轻量化的 TsFile 管理能力,端上的数据写到本地 TsFile,并提供一定的基础查询能力,同时支持将 TsFile 数据同步到云端。
图解大数据 | Hive与HBase详解@海量数据库查询
HBase是建立在Hadoop文件系统之上的、分布式面向列的数据库,包含Region Server、HBase Master、ZooKeeper等三个组件。Hive是基于Hadoop的一个数据仓库工具,用于结构化数据的查询、分析和汇总。
Flink Exactly-once 实现原理解析
这一课时我们将讲解 Flink “精确一次”的语义实现原理,同时这也是面试的必考点。Flink 的“精确一次”处理语义是,Flink 提供了一个强大的语义保证,也就是说在任何情况下都能保证数据对应用产生的效果只有一次,不会多也不会少。那么 Flink 是如何实现“端到端的精确一次处理”语义的呢?