知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3505内容
大语言模型及其应用场景
大语言模型(如通义千问)凭借强大的自然语言处理能力,在内容创作、对话系统、翻译、信息抽取、代码生成、智能搜索、教育、企业管理和法律等领域展现巨大潜力,助力提升各行业智能化水平。
|
7月前
| |
从零构建知识图谱:使用大语言模型处理复杂数据的11步实践指南
本文将基于相关理论知识和方法构建一个完整的端到端项目,系统展示如何利用知识图谱方法对大规模数据进行处理和分析。
|
8月前
| |
2025年大模型发展脉络:深入分析与技术细节
本文深入剖析2025年大模型发展脉络,涵盖裸模型与手工指令工程、向量检索、文本处理与知识图谱构建、自动化提示生成、ReAct多步推理及AI Agent崛起六大模块。从技术细节到未来趋势,结合最新进展探讨核心算法、工具栈与挑战,强调模块化、自动化、多模态等关键方向,同时指出计算资源、数据质量和安全伦理等问题。适合关注大模型前沿动态的技术从业者与研究者。
企业AI知识库搭建指南
中关村科金得助智能企业知识库基于AI大模型,支持多格式文档上传与自动解析,具备智能问答、内容生成、精准搜索等功能,助力企业高效构建产品文档、技术手册、FAQ等知识体系。
Vector | Graph:蚂蚁首个开源Graph RAG框架设计解读
引入知识图谱技术后,传统RAG链路到Graph RAG链路会有什么样的变化,如何兼容RAG中的向量数据库(Vector Database)和图数据库(Graph Database)基座,以及蚂蚁的Graph RAG开源技术方案和未来优化方向。
[万字长文]知识图谱之本体结构与语义解耦——知识建模看它就够了!
过去两年多的时间,针对蚂蚁域内业务场景和知识体系多样、复杂,知识建模成本高导致图谱项目启动难的问题,我们提出了一种结构与语义解耦的知识建模及schema设计方法,并在商家图谱、事理图谱、保险图谱等多个项目中进行实践。相关简化schema设计及帮助对知识的属性语义化、标准化的能力已经集成到蜘蛛知识平台。本文总结了我们过去所工作,沉淀为体系化的方法论,并针对不同复杂程度的知识建模问题,进行实操指南。
KAG:增强 LLM 的专业能力!蚂蚁集团推出专业领域知识增强框架,支持逻辑推理和多跳问答
KAG 是蚂蚁集团推出的专业领域知识服务框架,通过知识增强提升大型语言模型在特定领域的问答性能,支持逻辑推理和多跳事实问答,显著提升推理和问答的准确性和效率。
免费试用