知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3506内容
基于n8n创建自愈式用例库及质量知识图谱
本文分享了如何基于n8n构建自愈型质量管理系统。通过自动化采集缺陷、需求等数据并构建知识图谱,系统能智能分析、自动修复用例库。方案大幅降低了维护耗时与缺陷逃逸率,将测试团队从重复劳动中解放,转向质量策略设计,实现了质量数据的持续流动与优化。
知识蒸馏
知识蒸馏是一种模型压缩技术,通过让小模型(学生)模仿大模型(教师)的输出或中间特征,实现性能逼近甚至超越。核心方法包括基于软标签的Hinton蒸馏、带温度的softmax平滑分布、以及利用隐藏层特征的特征蒸馏。分为黑盒(仅用输出)与白盒(访问内部)两种模式,广泛用于加速推理与提升小模型泛化能力。(238字)
用n8n打造自愈型用例库与质量知识图谱
三年前,测试团队困于臃肿用例库与信息孤岛。我们基于n8n构建自愈型质量管理系统,打通需求、缺陷与测试数据,实现用例自动修复、智能推荐与持续优化,让质量知识自主进化。
|
1天前
| |
来自: 云原生
王耀恒:当AI学会“打假”,你的GEO策略还剩什么?
GEO领域正面临投机与建设的抉择:虚假榜单追逐短期流量,终将被算法淘汰;唯有深度内容、体系化知识与第三方验证构建的真实信任,才能赢得AI时代的长期价值。选择决定未来。
|
3天前
| |
2025 全球 GEO 行业观察:双轮驱动(市场 + 技术),AI 时代品牌新基建的破局之道
AI重构信息分发,GEO成品牌新基建。2025年AI搜索占全球63%,传统SEO失效,生成式引擎优化(GEO)通过结构化数据、语义适配与权威构建,助力内容在AI答案中优先被引。本文解析GEO六大核心挑战与落地策略。
GEO 优化必备:RAG 技术全解析(基于知识密集型 NLP 经典论文)
2020 年论文提出的 RAG(检索增强生成),专治大模型 “幻觉、知识过时” 等落地痛点。它将 “检索外部知识” 与 “生成回答” 深度绑定,先精准抓取相关知识片段,再让模型基于证据生成内容。通过端到端联合训练,检索与生成协同优化,事实准确率显著提升,幻觉率大降。无需重训模型即可更新知识,还能追溯答案来源。如今成企业客服、医疗法律等领域刚需,推动大模型从 “通用” 走向 “可信实用”。这让我们做GEO优化就有了基础理论和方法。
禅道文档 300 条用例一键生成:一次看懂爱测智能化测试平台的实力
测试团队面临需求碎片化、迭代加速的挑战,传统用例编写效率瓶颈凸显。爱测智能化测试平台借助生成式AI,实现从需求文档自动生成多场景、多格式、可执行的测试用例。通过大模型理解文档、智能体配置、知识图谱与自然语言驱动执行,平台几分钟内生成近300条高覆盖用例,支持导出至禅道等系统,全链路自动化。未来测试的竞争,是“会用AI”与“不会用AI”的差距。
GEO 优化的三大原则——结构化内容 / 语义权威 / 意图匹配
GEO(生成式增强优化)是适配生成式搜索引擎的核心战略,以结构化内容、语义权威、意图匹配为三大支柱。本文详解三原则内涵与逻辑,提供中小企业可直接落地的实操方法,含内容架构、主题深耕、用户需求匹配路径,助力内容被 AI 引擎优先推荐、提升转化。
|
8天前
| |
来自: 云原生
构建数据资产“导航地图”:详解 UModel 数据发现与全链路分析能力
你是否曾面对一个庞大的可观测系统,却不知从何下手?成百上千个实体定义散落在 APM、K8s、云产品等不同域中,关系错综复杂,文档滞后,新人上手难,模型演进无迹可循……阿里云 UModel 查询为此而生。它不是查询日志或指标,而是查询“模型本身”——让你一键看清:系统里定义了哪些实体?它们之间如何关联?哪些模型字段过多、描述缺失?跨域依赖是如何构建的?
AICoding实践:从Prd到代码生成
本文探讨了在AI技术推动软件工程范式变革的新阶段,如何通过构建增强型AI编程系统(codefuse)实现从需求到代码的端到端自动生成。
免费试用