基于深度学习的智能问答
纵观自动问答系统的技术发展历史,从1950年代因图灵测试而诞生至今,已经有几十年的历史。但真正在产业界得到大家的广泛关注,则得益于2011年Siri和Watson成功所带来的示范效应。自此,自动问答系统较以往任何时候都显得离实际应用更近。这一方面归功于机器学习与自然语言处理技术的长足进步,另一方面得
清华大学刘知远:在深度学习时代用HowNet搞事情
2017 年 12 月底,清华大学张钹院士做了一场题为《AI 科学突破的前夜,教授们应当看到什么?》的精彩特邀报告。他认为,处理知识是人类所擅长的,而处理数据是计算机所擅长的,如果能够将二者结合起来,一定能够构建出比人类更加智能的系统。
《从语言学理论到自然语言处理:筑牢技术根基》
在人工智能时代,自然语言处理(NLP)技术如智能语音助手、机器翻译等深刻改变生活与工作方式。其背后离不开语言学理论支撑,包括句法学解析句子结构、语义学解锁语言意义、语用学融入语境理解。句法学通过依存关系分析帮助计算机识别语法成分;语义学利用语义角色标注和向量表示提升语义理解;语用学结合对话历史和背景知识,实现更自然的交互。语言学与NLP协同发展,共同推动技术进步。
本地部署企业级自适应 RAG 应用的方法与实践
本文介绍了本地部署企业级自适应RAG(Adaptive Retrieval-Augmented Generation)应用的方法与实践。RAG结合信息检索与文本生成,广泛应用于问答、编程等领域。自适应RAG通过分类器评估查询复杂度,动态选择无检索、单步检索或多步检索策略,优化生成结果。其特点在于灵活性和适应性,能够根据输入情况调整检索和生成策略。核心技术包括检索策略的自适应、生成策略的自适应以及模型参数的自适应调整。通过实战,深入了解了RAG的工作原理和应用场景,并获得了宝贵经验。
《打破知识壁垒:解锁自然语言处理模型跨领域知识图谱关联与推理密码》
在人工智能快速发展的背景下,自然语言处理(NLP)技术成为各行业智能化变革的关键。知识图谱作为结构化的语义知识库,通过“实体-关系-实体”三元组描绘现实世界的概念及其关系,为NLP模型提供背景知识和推理依据。然而,随着多领域知识的爆发式增长,如何实现不同领域知识图谱的有效关联与推理成为亟待解决的问题。本文探讨了理解领域特性、实体对齐、关系映射与融合及深度学习推理模型构建等关键步骤,旨在打破领域间知识壁垒,提升NLP技术的智能化水平,推动其在智能问答、推荐、决策辅助等领域的广泛应用。