知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3244内容
|
3天前
|
英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快
英伟达提出nGPT(Normalized Transformer),通过单位范数归一化和超球面上的表示学习,显著提升了Transformer模型的训练速度和性能。实验显示,nGPT在处理4k长度序列时,训练速度比传统Transformer快10倍,且在多个下游任务中表现出色。论文地址:https://arxiv.org/pdf/2410.01131
|
3天前
| |
基于qwen max 的知识图谱 指令对比分析 结构 指令 领域 指令差异分析
感谢阿里开发者社区通义千问Qwen技术应用实践征文活动赠予的Qwen Max Token。本文介绍了三种知识图谱抽取模式:只给结构、给结构和领域引导、给结构、领域引导和领域few-shot样本。通过对比“只给结构”和“给结构和领域引导”两种方法,分析了它们在准确性、推理能力、数据覆盖范围和构建成本等方面的优劣。结果显示,领域引导显著提升了知识图谱的准确性和推理能力,但构建成本较高;而只给结构的方法适用于大规模通用文本的快速抽取,但精度较低。选择合适的方法应根据具体应用需求。
从“整理”到“思考”:文档管理工具的新角色
在信息爆炸时代,文档管理的挑战转向高效组织和提取知识。传统工具易形成知识孤岛,而语义网络通过内容、上下文和关联性建立知识图谱,使信息“活”起来。开源工具如“板栗看板”采用节点式数据架构,链接文档各部分至具体任务或主题,助力用户在复杂知识网络中自由穿梭,尤其适用于跨学科研究,帮助发现文献间潜在联系,提供全新研究视角。
|
3天前
|
预训练模型(Pre-trained Models)
预训练模型是在大量文本数据上训练的模型,能捕捉语言的通用特征,通过微调适用于各种NLP任务。它们具备迁移学习能力,减少训练时间和资源需求,支持多任务学习,但需注意模型偏见和可解释性问题。常见模型有BERT、GPT等,广泛应用于文本分类、情感分析等领域。
探索未知:技术之旅的无限可能与个人成长####
本文旨在分享我的技术探索之旅,从初涉代码的迷茫到逐步成长为一名自信的开发者。通过具体案例,探讨了持续学习、实践创新、社区参与及心态调整在个人技术成长中的重要性,鼓励读者勇于探索未知,享受技术带来的挑战与乐趣。 ####
|
4天前
|
命名实体识别(Named Entity Recognition, NER)
命名实体识别(NER)是自然语言处理的重要任务,旨在从文本中识别并分类特定实体,如人名、地点、组织等。通过BIO等标注模式,利用HMM、CRF及深度学习模型如RNN、LSTM、Transformer等进行实体识别。预训练模型如BERT显著提升了NER的性能。NER广泛应用于新闻分析、生物医学等领域,是信息提取、知识图谱构建等任务的基础。
|
4天前
|
自然语言处理(Natural Language Processing,简称NLP)
自然语言处理(NLP)是人工智能的分支,旨在让计算机理解、解释和生成人类语言。NLP的关键技术和应用包括语言模型、词嵌入、文本分类、命名实体识别、机器翻译、文本摘要、问答系统、情感分析、对话系统、文本生成和知识图谱等。随着深度学习的发展,NLP的应用日益广泛且效果不断提升。
|
6天前
|
构建一个基于通义千问的智能客服系统
公司开发一个智能客服系统,帮助用户快速找到他们需要的商品信息、解决问题,并提供个性化的购物建议。系统需要能够处理大量的用户提问,并以自然语言的形式给出准确的回答。
|
7天前
| |
基于图论算法有向图PageRank与无向图Louvain算法构建指令的方式方法 用于支撑qwen agent中的统计相关组件
利用图序列进行数据解读,主要包括节点序列分析、边序列分析以及结合节点和边序列的综合分析。节点序列分析涉及节点度分析(如入度、出度、度中心性)、节点属性分析(如品牌、价格等属性的分布与聚类)、节点标签分析(如不同标签的分布及标签间的关联)。边序列分析则关注边的权重分析(如关联强度)、边的类型分析(如管理、协作等关系)及路径分析(如最短路径计算)。结合节点和边序列的分析,如子图挖掘和图的动态分析,可以帮助深入理解图的结构和功能。例如,通过子图挖掘可以发现具有特定结构的子图,而图的动态分析则能揭示图随时间的变化趋势。这些分析方法结合使用,能够从多个角度全面解读图谱数据,为决策提供有力支持。
免费试用