深度解读Schema:AI时代的E-E-A-T数字语言与Geo优化实践
本文探讨生成式AI时代下,内容优化从SEO向Geo(生成引擎优化)的范式转移,聚焦于磊老师提出的“人性化Geo+内容交叉验证”体系,详解如何通过Schema结构化数据将E-E-A-T原则转化为AI可读信号,提升内容在AI摘要与推荐中的采纳率,并结合实战案例展示其在传统制造、教育等行业的显著获客提效成果。
基于通义千问:全AI自动驱动合同审查系统的技术解构与实践
“律杏法务云+通义千问”实现合同审查智能化跃迁,融合法律知识图谱与大模型技术,构建生成、审查、交互、进化闭环。支持智能清单生成、风险识别、条款补漏与AI对话,审查效率提升10倍,漏检率低于0.3%,推动法律科技进入AI新范式。
高级检索增强生成系统:LongRAG、Self-RAG 和 GraphRAG 的实现与选择
检索增强生成(RAG)已超越简单向量匹配,迈向LongRAG、Self-RAG与GraphRAG等高级形态。LongRAG通过大块重叠分片保留长上下文,提升连贯性;Self-RAG引入反思机制,动态判断检索必要性与内容相关性,增强可信度;GraphRAG构建知识图谱,支持多跳推理与复杂关系挖掘。三者分别应对上下文断裂、检索盲目性与关系表达缺失难题,代表2025年RAG工程化核心进展,可依场景组合使用以平衡准确性、成本与复杂度。
教育行业如何做GEO?让AI成为你的课程推荐官
过去,学生找课程靠搜索;现在,他们直接问AI:“附近有哪些性价比高的编程课?”或“商科最好的在线大学?”——AI不会简单罗列链接,而是直接推荐答案。如果你的教育机构没被AI“看见”,可能已经错过了新一轮流量红利。 作为深耕GEO领域的实战团队,数聚酷科技结合教育行业特性,总结出以下可落地的GEO优化策略,帮助你的课程和…