准确率98%的深度学习交通标志识别是如何做到的?
我们可以创建一个能够对交通标志进行分类的模型,并且让模型自己学习识别这些交通标志中最关键的特征。在这篇文章中,我将演示如何创建一个深度学习架构,这个架构在交通标志测试集上的识别准确率达到了98%。
MySQL5.7杀手级新特性:GTID原理与实战
MySQL5.7杀手级新特性:GTID原理与实战
一、理论篇
1.1 GTID是什么(what)
1.1.1 GTID组成和架构
GTID 架构
a) GTID = server_uuid:transaction_id
b) server_uuid 来源于 auto.cnf
c) G
Python数据处理库pandas入门教程
pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库。本文是对它的一个入门教程。
pandas提供了快速,灵活和富有表现力的数据结构,目的是使“关系”或“标记”数据的工作既简单又直观。它旨在成为在Python中进行实际数据分析的高级构建块。
# 入门介绍
pandas适合于许多不同类型的数据,包括:
*
卷积神经网络实战(可视化部分)——使用keras识别猫咪
在近些年,深度学习领域的卷积神经网络(CNNs或ConvNets)在各行各业为我们解决了大量的实际问题。但是对于大多数人来说,CNN仿佛戴上了神秘的面纱。我经常会想,要是能将神经网络的过程分解,看一看每一个步骤是什么样的结果该有多好!这也就是这篇博客存在的意义。
数据仓库介绍与实时数仓案例
1.数据仓库简介
数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。