机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
71492内容
基于Keras的LSTM多变量时间序列预测
还在为设计多输入变量的神经网络模型发愁?来看看大神如何解决基于Keras的LSTM多变量时间序列预测问题!文末附源码!
【深度学习之美】一入侯门“深”似海,深度学习深几许(入门系列之一)
当你和女朋友在路边手拉手一起约会的时候,你可曾想,你们之间早已碰撞出了一种神秘的智慧–深度学习。恋爱容易,相处不易,不断磨合,打造你们的默契,最终才能决定你们是否在一起。深度学习也一样,输入各种不同的参数,进行训练拟合,最后输出拟合结果。 恋爱又不易,且学且珍惜!
【深度学习之美】人工“碳”索意犹尽,智能“硅”来未可知(入门系列之二)
现在的人工智能,大致就是用“硅基大脑”模拟或重现“碳基大脑的过程”。那么,在未来会不会出现“碳硅合一”的大脑或者全面超越人脑的“硅基大脑”呢?专家们的回答是“会的”。而由深度学习引领的人工智能,正在开启这样的时代。
| |
来自: 云原生
利用Docker和阿里云容器服务轻松搭建TensorFlow Serving集群
本文是系列中的第二篇文章,将带您快速了解Tensorflow Serving的原理和使用,并利用阿里云容器服务轻松在云端搭建TensorFlow Serving集群。
MaxCompute 图计算用户手册(上)
概要 ODPS GRAPH是一套面向迭代的图计算处理框架。图计算作业使用图进行建模,图由点(Vertex)和边(Edge)组成,点和边包含权值(Value),ODPS GRAPH支持下述图编辑操作: 修改点或边的权值; 增加/删除点; 增加/删除边; 备注: 编辑点和边时,点与边的关系需要用户维护。
看见“信任”,可信计算史上最全解析
等保2.0将可信提升到一个新的强度。在等保一到四级都有可信的要求,主要在三个领域:计算环境可信、网络可信、接入可信。
【深度学习之美】山重水复疑无路,最快下降问梯度(入门系列之七)
“天下武功,唯快不破”。欲速览无限风光,必攀险峰;欲速抵山底幽谷,则必滚陡坡。这滚山坡的道理,其实就是梯度递减策略,而梯度递减策略,则是BP算法成功背后的“男(ji)人(chu)”。想知道为啥,来一探究竟呗!
Python数据处理库pandas入门教程
pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库。本文是对它的一个入门教程。 pandas提供了快速,灵活和富有表现力的数据结构,目的是使“关系”或“标记”数据的工作既简单又直观。它旨在成为在Python中进行实际数据分析的高级构建块。 # 入门介绍 pandas适合于许多不同类型的数据,包括: *
【深度学习之美】卷地风来忽吹散,积得飘零美如画(入门系列之十)
“此情可待成追忆”。可“记忆”到底是什么?如果我告诉你,“记忆”就是一种“卷积”,你可别不信。卷积并不神秘,它就在你我的生活中,它就在深度学习里!这可能是史上最通俗易懂的关于“卷积”介绍文章,不信你就进来瞅瞅呗。
免费试用