机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
71493内容
基于Keras的LSTM多变量时间序列预测
还在为设计多输入变量的神经网络模型发愁?来看看大神如何解决基于Keras的LSTM多变量时间序列预测问题!文末附源码!
【深度学习之美】一入侯门“深”似海,深度学习深几许(入门系列之一)
当你和女朋友在路边手拉手一起约会的时候,你可曾想,你们之间早已碰撞出了一种神秘的智慧–深度学习。恋爱容易,相处不易,不断磨合,打造你们的默契,最终才能决定你们是否在一起。深度学习也一样,输入各种不同的参数,进行训练拟合,最后输出拟合结果。 恋爱又不易,且学且珍惜!
一文读懂「Attention is All You Need」| 附代码实现
前言 2017 年中,有两篇类似同时也是笔者非常欣赏的论文,分别是 FaceBook 的 Convolutional Sequence to Sequence Learning 和 Google 的 Attention is All You Need,它们都算是 Seq2Seq 上的创新,本质上来说,都是抛弃了 RNN 结构来做 Seq2Seq 任务。
【演讲实录+视频】走近40+世界级AI专家!第三届中国人工智能大会资料分享
第三届中国人工智能大会(CCAI 2017)于7月22-23日在杭州召开,为帮助更多朋友理解人工智能技术,云栖社区特别整理大会资料,不断更新。
Kaggle老手领你入门梯度提升——梯度提升两三事
梯度提升方法(Gradient Boosting)在众多机器学习竞赛中有着广泛的应用。本文介绍了梯度提升的基本概念,并结合实例讨论了梯度提升方法在实践中应用。
深度学习必备手册(上)
深度学习作为人工智能的前沿技术,虽然一方面推动者人工智能的发展;但是人类的终极目标是强人工智能,最近也有一些关于类似于笔者认为的广度学习的出现,但是宗其所属,还是应该在深度学习发展的历史上前进。
机器学习在高德起点抓路中的应用实践 | 7月18号云栖夜读
今天的首篇文章,讲述了:高德地图作为中国领先的出行领域解决方案提供商,导航是其核心用户场景。路线规划作为导航的前提,是根据起点、终点以及路径策略设置,为用户量身定制出行方案。起点抓路,作为路线规划的初始必备环节,其准确率对于路线规划质量及用户体验至关重要。
【深度学习之美】BP算法双向传,链式求导最缠绵(入门系列之八)
说到BP(Back Propagation)算法,人们通常强调的是反向传播,其实它是一个双向算法:正向传播输入信号,反向传播误差信息。接下来,你将看到的,可能是史上最为通俗易懂的BP图文讲解,不信?来瞅瞅并吐吐槽呗!
【深度学习之美】人工“碳”索意犹尽,智能“硅”来未可知(入门系列之二)
现在的人工智能,大致就是用“硅基大脑”模拟或重现“碳基大脑的过程”。那么,在未来会不会出现“碳硅合一”的大脑或者全面超越人脑的“硅基大脑”呢?专家们的回答是“会的”。而由深度学习引领的人工智能,正在开启这样的时代。
基于深度学习的智能问答
纵观自动问答系统的技术发展历史,从1950年代因图灵测试而诞生至今,已经有几十年的历史。但真正在产业界得到大家的广泛关注,则得益于2011年Siri和Watson成功所带来的示范效应。自此,自动问答系统较以往任何时候都显得离实际应用更近。这一方面归功于机器学习与自然语言处理技术的长足进步,另一方面得
免费试用