TensorFlow

首页 标签 TensorFlow
# TensorFlow #
关注
5057内容
机器学习项目实战:使用Python实现图像识别
在AI时代,Python借助TensorFlow和Keras实现图像识别,尤其在监控、驾驶、医疗等领域有广泛应用。本文通过构建CNN模型识别MNIST手写数字,展示图像识别流程:安装库→加载预处理数据→构建模型→训练→评估。简单项目为深度学习入门提供基础,为进一步探索复杂场景打下基础。
ModelScope模型库体验之中文StructBERT系列预训练语言模型
StructBERT在BERT的基础上提出改进优化,通过在句子级别和词级别引入两个新的目标函数,打乱句子/词的顺序并使模型对其进行还原的方式,能让机器更好地掌握人类语法,加深对自然语言的理解,使得模型学习到更强的语言结构信息。
ECA-Net:深度卷积神经网络的高效通道注意力
最近,**通道注意力机制**已被证明在提高深度卷积神经网络 (CNN) 的性能方面具有巨大潜力。然而,大多数现有方法致力于开发更复杂的注意力模块以获得更好的性能,这不可避免地增加了模型的复杂性。为了克服性能和复杂性权衡的悖论,**本文提出了一种高效通道注意 (ECA) 模块,该模块仅涉及少量参数,同时带来明显的性能增益**。通过剖析 SENet 中的通道注意模块,我们凭经验表明**避免降维对于学习通道注意很重要**,**适当的跨通道交互可以在显着降低模型复杂度的同时保持性能**。因此,**我们提出了一种无需降维的局部跨通道交互策略,可以通过一维卷积有效实现**。此外,**我们开发了一种自适应选
SENet架构-通道注意力机制
SENet 是 ImageNet Challenge 图像识别比赛 2017 年的冠军,是来自 Momenta 公司 的团队完成。他们提出了 Squeeze-and-Excitation Networks(简称 SENet)。SENet 不是独立的模型设计,只对模型的一种优化。一般 SENet 都会结合其它模型一起使用,比如 SENet 用于 ResNet-50 中我们就把这个模型称为 SE-ResNet-50,比如 SENet 用于 Inception-ResNet-v2 中我们就把这个模型称为 SE- Inception-ResNet-v2。最早提出 SENet 的论文是《Squeeze-
ModelScope使用之模型部署
ModelScope是阿里巴巴打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!本文演示如何将模型部署到阿里云的EAS,对外提供服务。
【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之EfficientNet,高效的卷积神经网络,降低参数量
YOLOv8专栏探讨了目标检测的创新改进,包括模型扩展和神经架构搜索。提出的新方法使用复合系数平衡网络的深度、宽度和分辨率,产生了EfficientNets系列,其在准确性和效率上超越了先前的ConvNets。EfficientNet-B7在ImageNet上达到84.3%的顶级准确率,同时保持较小的模型大小和更快的推理速度。文章提供了论文和代码链接,以及核心的EfficientNet模型构建Python代码。
全面解析TensorFlow Lite:从模型转换到Android应用集成,教你如何在移动设备上轻松部署轻量级机器学习模型,实现高效本地推理
【8月更文挑战第31天】本文通过技术综述介绍了如何使用TensorFlow Lite将机器学习模型部署至移动设备。从创建、训练模型开始,详细演示了模型向TensorFlow Lite格式的转换过程,并指导如何在Android应用中集成该模型以实现预测功能,突显了TensorFlow Lite在资源受限环境中的优势及灵活性。
车辆违停检测:基于计算机视觉与深度学习的自动化解决方案
随着智能交通技术的发展,传统人工交通执法方式已难以满足现代城市需求,尤其是在违法停车监控与处罚方面。本文介绍了一种基于计算机视觉和深度学习的车辆违停检测系统,该系统能自动监测、识别并报警违法停车行为,大幅提高交通管理效率,降低人力成本。通过使用YOLO算法进行车辆检测,结合区域分析判断车辆是否处于禁停区,实现了从车辆识别到违停判定的全流程自动化。此系统不仅提升了交通管理的智能化水平,也为维护城市交通秩序提供了技术支持。
免费试用