TensorFlow

首页 标签 TensorFlow
# TensorFlow #
关注
5128内容
|
3月前
|
基于深度学习的【野生动物识别】系统设计与实现~Python
动物识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对18种动物数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张动物图片识别其名称。目前可识别的动物有:'乌龟', '云豹', '变色龙', '壁虎', '狞猫', '狮子', '猎豹', '美洲狮', '美洲虎', '老虎', '蜥蜴', '蝾螈', '蟾蜍', '豹猫', '钝吻鳄', '雪豹','非洲豹', '鬣蜥'。本系统是一个完整的人工智能,机器学习,深度学习项目,包含训练预测代码,训练好的模型,WEB网页端界面,数
|
1月前
|
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
|
11天前
|
YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
|
9天前
|
RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
Android TensorFlowLite sdk接入详细记录
前言 最近在研究ML的相关内容,开始在Android应用中接入TensorFlowLite。花了不少时间,添了不少坑,如果是裸的空项目接入还好,如果是现有的线上产品的接入,还是会有不少问题需要处理的,而且过程中,很多错误,网上的结论都是错误的,这个流程是我手把手一步步走的~亲测靠谱 先看效果 .
Perseus-BERT——业内性能极致优化的BERT训练方案
【作者】 笋江(林立翔)   驭策(龚志刚)   蜚廉(王志明)   昀龙(游亮) 一,背景——横空出世的BERT全面超越人类 2018年在自然语言处理(NLP)领域最具爆炸性的一朵“蘑菇云”莫过于Google Research提出的BERT(Bidirectional Encoder
| |
来自: 物联网
基于TensorFlow Lite Micro在物联网设备上玩转TinyML之离线语音唤醒
本文介绍如何基于HaaS EDU K1进行TFLite-Micro离线语音模型的部署。通过本文将学习到离线语音识别全链路开发流程。从语音数据集采集到模型训练,再到模型部署的TinyML(微型机器学习)整个生命周期。
免费试用