TensorFlow

首页 标签 TensorFlow
# TensorFlow #
关注
5059内容
深度学习必备手册(上)
深度学习作为人工智能的前沿技术,虽然一方面推动者人工智能的发展;但是人类的终极目标是强人工智能,最近也有一些关于类似于笔者认为的广度学习的出现,但是宗其所属,还是应该在深度学习发展的历史上前进。
| |
来自: 云原生
利用Docker和阿里云容器服务轻松搭建TensorFlow Serving集群
本文是系列中的第二篇文章,将带您快速了解Tensorflow Serving的原理和使用,并利用阿里云容器服务轻松在云端搭建TensorFlow Serving集群。
客户端码农学习ML —— 工具框架Tensorflow及Android、iOS上初步实验
与其上来就学习相对枯燥易让人放弃的数学,不如先做几个例子并在Android、iOS上熟悉下整个操作流程,通过实战激发下兴趣。 开发环境准备 首先安装Python,推荐Python3,装好后别忘了设置下载源镜像,不然安装各种包的时候下载速度很感人。
一步一步带你用TensorFlow玩转LSTM
LSTM在解决很多实际问题上效果非常好,通过本文你可以了解到在TensorFlow中,如何实现基本的LSTM网络。
一文入门卷积神经网络:CNN通俗解析
CNN基础知识介绍及TensorFlow具体实现,对于初学者或者求职者而言是一份不可多得的资料。
深度学习训练,选择P100就对了
本文使用NVCaffe、MXNet、TensorFlow三个主流开源深度学习框架对P100和P40做了图像分类场景的卷积神经网络模型训练的性能对比,并给出了详细分析,结论是P100比P40更适合深度学习训练场景。
Kubeflow实战系列:阿里云上使用JupyterHub
介绍 本系列将介绍如何在阿里云容器服务上运行Kubeflow, 本文介绍如何使用Jupyter Hub。 背景介绍 时间过得真快,李世乭和AlphaGo的人机对弈已经是两年前的事情。在过去的两年中,人工智能开始从学术界向工业界转型,基于人工智能技术的产品化落地和工业界方案的探索正如火如荼的进行。
2018 NLPCC Chinese Grammatical Error Correction 论文小结
这一段时间,笔者一直在研究语音识别后的文本纠错,而就在八月26-30日,CCF的自然语言处理和中文计算会议召开了,笔者也从师兄那里拿到了新鲜出炉的会议论文集,其中重点看的自然是其shared task2:grammatical error correction的overview以及优胜团队的论文。
TensorFlow在iOS和Mac上的使用
一、环境 1、首先你得安装好Xcode 8,确定开发者目录指向你安装Xcode的位置并且已经被激活。(如果你在安装Xcode之前已经安装了Homebrew,这可能会指向错误的地址,导致TensorFlow安装失败): sudo xcode-select -s /Applications/Xcode.
免费试用