TensorFlow

首页 标签 TensorFlow
# TensorFlow #
关注
5057内容
Kubeflow实战系列:阿里云上使用JupyterHub
介绍 本系列将介绍如何在阿里云容器服务上运行Kubeflow, 本文介绍如何使用Jupyter Hub。 背景介绍 时间过得真快,李世乭和AlphaGo的人机对弈已经是两年前的事情。在过去的两年中,人工智能开始从学术界向工业界转型,基于人工智能技术的产品化落地和工业界方案的探索正如火如荼的进行。
2018 NLPCC Chinese Grammatical Error Correction 论文小结
这一段时间,笔者一直在研究语音识别后的文本纠错,而就在八月26-30日,CCF的自然语言处理和中文计算会议召开了,笔者也从师兄那里拿到了新鲜出炉的会议论文集,其中重点看的自然是其shared task2:grammatical error correction的overview以及优胜团队的论文。
TensorFlow在iOS和Mac上的使用
一、环境 1、首先你得安装好Xcode 8,确定开发者目录指向你安装Xcode的位置并且已经被激活。(如果你在安装Xcode之前已经安装了Homebrew,这可能会指向错误的地址,导致TensorFlow安装失败): sudo xcode-select -s /Applications/Xcode.
使用Opencv构建一个简单的图像相似检测器(MSE、SSIM)
本文使用opencv。numpy等简单的工具库,根据mse及ssim两种算法来评估两张图像的相似度,便于理解与实践。
阿里开源!轻量级深度学习端侧推理引擎 MNN
阿里妹导读:近日,阿里正式开源轻量级深度学习端侧推理引擎“MNN”。 AI科学家贾扬清如此评价道:“与 Tensorflow、Caffe2 等同时覆盖训练和推理的通用框架相比,MNN 更注重在推理时的加速和优化,解决在模型部署的阶段的效率问题,从而在移动端更高效地实现模型背后的业务。
基于TensorFlow.js的JavaScript机器学习
虽然python或r编程语言有一个相对容易的学习曲线,但是Web开发人员更喜欢在他们舒适的javascript区域内做事情。目前来看,node.js已经开始向每个领域应用javascript,在这一大趋势下我们需要理解并使用JS进行机器学习。
浅析GPU通信技术(上)-GPUDirect P2P
1. 背景 GPU在高性能计算和深度学习加速中扮演着非常重要的角色, GPU的强大的并行计算能力,大大提升了运算性能。随着运算数据量的不断攀升,GPU间需要大量的交换数据,GPU通信性能成为了非常重要的指标。
免费试用