基于 MySQL + Tablestore 分层存储架构的大规模订单系统实践-数据同步 DTS 篇
前言 前文架构篇,可以看到 MySQL + Tablestore 非常适合大规模订单系统这一类需求场景。那么,我们首先要做的是,利用 CDC(Change Data Capture) 技术将订单数据实时从 MySQL 同步到 Tablestore 中。对于订单系统的数据同步,我们需要关注同步的稳定性、实时性。目前,存在多款工具可以实现这一功能,他们有的是开源工具如 Canal,有的是阿里云端服务如
浅谈数据同步
数据同步在后端是非常常见的场景,数据同步的稳定性和实时性对业务有非常重要的影响。数据同步的方式主要有全量同步和增量同步两种,本文主要介绍上述两种方式的差异,以及常用的解决方案。
Kubernetes网络插件Canal的工作原理和关键功能
Kubernetes(简称 K8s)已经成为容器编排领域的标准,但要使 K8s 集群稳定运行,一个可靠的网络解决方案是至关重要的。在 K8s 中,有多种网络插件可供选择,每种插件都有其独特的特性和优势。在本文中,我们将深入探讨一个叫做 Canal 的 K8s 网络插件,穿插代码示例,以帮助您更好地理解和使用它。
高并发场景下,6种方案,保证缓存和数据库的最终一致性!
在解决缓存一致性的过程中,有多种途径可以保证缓存的最终一致性,应该根据场景来设计合适的方案,读多写少的场景下,可以选择采用“Cache-Aside结合消费数据库日志做补偿”的方案,写多的场景下,可以选择采用“Write-Through结合分布式锁”的方案,写多的极端场景下,可以选择采用“Write-Behind”的方案。