人工智能浪潮中的伦理困境:技术发展与道德责任的平衡
在人工智能技术飞速发展的今天,我们面临着前所未有的伦理挑战。本文深入探讨了AI技术带来的伦理问题,包括数据隐私、算法偏见和自动化失业等。通过分析这些挑战,本文提出了一系列解决策略,旨在促进AI技术的健康发展,同时保护人类社会的福祉。
大模型
大模型正重塑数字世界,以千亿级参数和深度学习技术驱动AI革命。它赋能内容生成、智能交互与知识服务,同时带来伦理、隐私与能耗挑战。未来需走向高效、可信、向善的可持续发展之路。
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
以视觉为中心的俯视图(BEV)感知最近受到了广泛的关注,因其可以自然地呈现自然场景且对融合更友好。随着深度学习的快速发展,许多新颖的方法尝试解决以视觉为中心的BEV感知,但是目前还缺乏对该领域的综述类文章。本文对以视觉为中心的BEV感知及其扩展的方法进行了全面的综述调研,并提供了深入的分析和结果比较,进一步思考未来可能的研究方向。如下图所示,目前的工作可以根据视角变换分为两大类,即基于几何变换和基于网络变换。前者利用相机的物理原理,以可解释性的方式转换视图。后者则使用神经网络将透视图(PV)投影到BEV上。
激光雷达与视觉联合标定综述!(系统介绍/标定板选择/在线离线标定等)
由于2D识别的成功,论文引入了一个大型基准,称为OMNI3D,重新审视了3D目标检测的任务。OMNI3D对现有数据集进行了重新利用和组合,生成了234k张图像,标注了300多万个实例和97个类别。由于相机内参的变化以及场景和目标类型的丰富多样性,这种规模的3D检测具有挑战性。论文提出了一个名为Cube R-CNN的模型,旨在通过统一的方法在摄像机和场景类型之间进行泛化。结果表明,在更大的OMNI3D和现有基准上,Cube R-CNN优于先前的工作。最后,论文证明了OMNI3D是一个强大的3D目标识别数据集,表明它提高了单个数据集的性能,并可以通过预训练加速对新的较小数据集的学习。
目标跟踪 | 3D目标跟踪高级入门!
在本文中,我将探讨3D跟踪领域,并向您展示如何设计一个3D目标跟踪系统。我们将从平面的2D 开始,然后转移到3D,将看到2D 和3D 跟踪之间的区别。