自动驾驶

首页 标签 自动驾驶
# 自动驾驶 #
关注
6218内容
一文尽览 | 计算机视觉中的鱼眼相机模型及环视感知任务汇总!(上)
环视鱼眼摄像机通常用于自动驾驶中的近距离感知,车辆四面的四个鱼眼摄像头足以覆盖车辆周围的360°范围,捕捉整个近距离区域。一些应用场景包括自动泊车、交通拥堵辅助等
一文尽览 | 首篇Transformer在3D点云中的应用综述(检测/跟踪/分割/降噪/补全)(下)
Transformer 一直是自然语言处理 (NLP) 和计算机视觉 (CV) 的核心。NLP 和 CV 的巨大成功激发了研究者对 Transformer 在点云处理中的使用的探索。但是,Transformer如何应对点云的不规则性和无序性?
首篇!最全的全景分割综述(RGB图像/医学图像/LiDAR)(上)
本文对现有的全景分割方法进行了第一次全面的综述。因此,基于所采用的算法、应用场景和主要目标的性质,对现有全景技术进行了定义良好的分类。此外,还讨论了全景分割在通过伪标记标注新数据集中的应用。接下来,进行消融研究,以从不同角度了解全景方法。此外,还讨论了适用于全景分割的评估指标,并对现有解决方案的性能进行了比较,以了解最新技术并确定其局限性和优势。最后,阐述了当前主题技术面临的挑战以及近期吸引大量关注的未来趋势,这可以作为未来研究的起点。
基于YOLOv8深度学习的路面标志线检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
基于YOLOv8深度学习的路面标志线检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
使用Python实现深度学习模型:智能车联网与自动驾驶
【8月更文挑战第14天】 使用Python实现深度学习模型:智能车联网与自动驾驶
|
2月前
| |
来自: 云原生
深度学习之分布式智能体学习
基于深度学习的分布式智能体学习是一种针对多智能体系统的机器学习方法,旨在通过多个智能体协作、分布式决策和学习来解决复杂任务。这种方法特别适用于具有大规模数据、分散计算资源、或需要智能体彼此交互的应用场景。
未来城市的智慧交通系统
智慧交通系统是未来城市发展的重要组成部分,通过整合物联网、大数据和人工智能技术,实现交通的智能化管理。本文探讨了智慧交通系统的关键技术、架构及其在实际应用中的案例,并展望了未来的发展趋势。
免费试用