独家专访阿里集团副总裁贾扬清:我为什么选择加入阿里巴巴?
在这次访谈中,贾扬清向我们透露了他加入阿里的原因,并对他目前在阿里主要负责的工作做了详细说明,他不仅回顾了过去 6 年 AI 框架领域发生的变化,也分享了自己对于 AI 领域现状的观察和对未来发展的思考。结合自己的经验,贾扬清也给出了一些针对 AI 方向选择和个人职业发展的建议,对于 AI 从业者来
实时计算 Flink SQL 核心功能解密
Flink SQL 是于2017年7月开始面向集团开放流计算服务的。虽然是一个非常年轻的产品,但是到双11期间已经支撑了数千个作业,在双11期间,Blink 作业的处理峰值达到了5+亿每秒,而其中仅 Flink SQL 作业的处理总峰值就达到了3亿/秒。
Blink 有何特别之处?菜鸟供应链场景最佳实践
> 作者:晨笙、缘桥
菜鸟供应链业务链路长、节点多、实体多,使得技术团队在建设供应链实时数仓的过程中,面临着诸多挑战,如:如何实现实时变Key统计?如何实现实时超时统计?如何进行有效地资源优化?如何提升多实时流关联效率?如何提升实时作业的开发效率? 而 Blink 能否解决这些问题?下面一起来深入了解。
## 背景
菜鸟从2017年4月开始探索 Blink(即 Apache
LC3视角:Kubernetes下日志采集、存储与处理技术实践
在Kubernetes服务化、日志处理实时化以及日志集中式存储趋势下,Kubernetes日志处理上也遇到的新挑战,包括:容器动态采集、大流量性能瓶颈、日志路由管理等问题。本文介绍了“Logtail + 日志服务 + 生态”架构,介绍了:Logtail客户端在Kubernetes日志采集场景下的优势;日志服务作为基础设施一站式解决实时读写、HTAP两大日志强需求;日志服务数据的开放性以及与云产品、开源社区相结合,在实时计算、可视化、采集上为用户提供的丰富选择。
专访阿里巴巴林伟:三项世界级挑战背后的思考、实践和经验
今年双11,阿里云大数据平台扛住了巨大的技术挑战,主要体现在实时数据处理技术以及超大规模的离线数据处理两方面,来自阿里巴巴的资深技术专家林伟将为大家介绍双11前中后大数据计算平台对于整个双11的成功提供了哪些不可或缺的支持。