从声学模型算法角度总结 2016 年语音识别的重大进步
免费开通大数据服务:https://www.aliyun.com/product/odps
在过去的一年中,语音识别再次取得非常大的突破。IBM、微软等多家机构相继推出了自己的 Deep CNN 模型,提升了语音识别的准确率;Residual/Highway 网络的提出使我们可以把神经网络训练的更加深。
Kubeflow实战系列:阿里云上小试TFJob
`tf-operator`是Kubeflow的第一个CRD实现,解决的是TensorFlow模型训练的问题,它提供了广泛的灵活性和可配置,可以与阿里云上的NAS,OSS无缝集成,并且提供了简单的UI查看训练的历史记录。
全图化引擎(AI·OS)中的编译技术
全图化引擎又称算子执行引擎,它的介绍可以参考从HA3到AI OS -- 全图化引擎破茧之路。本文从算子化的视角介绍了编译技术在全图化引擎中的运用。主要内容有:
通过脚本语言扩展通用算子上的用户订制能力,目前这些通用算子包括scorer算子,filter算子等。
流行AI框架和库的优缺点比较
不知道自己应该选用那个AI框架和库?看看本文就行了,本文为AI开发的工程师们梳理了现在最流行的框架,并简单的分析了它们的优缺点。
《TensorFlow技术解析与实战》——1.2 什么是深度学习
本节书摘来自异步社区《TensorFlow技术解析与实战》一书中的第1章,第1.2节,作者李嘉璇,更多章节内容可以访问云栖社区“异步社区”公众号查看
第1章 人工智能概述
TensorFlow技术解析与实战
有人说,人工智能在世界范围的流行,是因为那盘围棋。