浅析GPU通信技术(上)-GPUDirect P2P
1. 背景
GPU在高性能计算和深度学习加速中扮演着非常重要的角色, GPU的强大的并行计算能力,大大提升了运算性能。随着运算数据量的不断攀升,GPU间需要大量的交换数据,GPU通信性能成为了非常重要的指标。
Kubeflow 使用指南
Kubeflow(https://github.com/kubeflow)是基于Kubernetes(https://kubernets.io,容器编排与管理服务软件)和TensorFlow(https://tensorflow.org,深度学习库)的机器学习流程工具,使用Ksonnet进行应用包的管理。
《TensorFlow技术解析与实战》——1.3 深度学习的入门方法
本节书摘来自异步社区《TensorFlow技术解析与实战》一书中的第1章,第1.1节,作者李嘉璇,更多章节内容可以访问云栖社区“异步社区”公众号查看
第1章 人工智能概述
1.3 深度学习的入门方法
要想入门深度学习,需要两个工具,即算法知识和大量的数据,外加一台计算机,如果有GPU就更好了,但是因为许多入门初学者的条件有限,没有GPU也可以,本书的许多讲解都是基于Mac笔记本完成的。
Perseus-BERT——业内性能极致优化的BERT训练方案
【作者】 笋江(林立翔) 驭策(龚志刚) 蜚廉(王志明) 昀龙(游亮)
一,背景——横空出世的BERT全面超越人类
2018年在自然语言处理(NLP)领域最具爆炸性的一朵“蘑菇云”莫过于Google Research提出的BERT(Bidirectional Encoder
【李沐】十分钟从 PyTorch 转 MXNet
PyTorch 是一个纯命令式的深度学习框架。它因为提供简单易懂的编程接口而广受欢迎,而且正在快速的流行开来。MXNet通过ndarray和 gluon模块提供了非常类似 PyTorch 的编程接口。本文将简单对比如何用这两个框架来实现同样的算法。