算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10762内容
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
2天前
| |
LossVal:一种集成于损失函数的高效数据价值评估方法
LossVal是一种创新的机器学习方法,通过在损失函数中引入实例级权重,直接在训练过程中评估数据点的重要性,避免了传统方法中反复重训练模型的高计算成本。该方法适用于回归和分类任务,利用最优传输距离优化权重,确保模型更多地从高质量数据中学习。实验表明,LossVal在噪声样本检测和高价值数据点移除等任务上表现优异,具有更低的时间复杂度和更稳定的性能。论文及代码已开源,为数据价值评估提供了高效的新途径。
sam模型迁移昇腾训练loss不收敛问题的解决办法
在将SAM模型迁移到昇腾平台时,遇到了精度问题。具体表现为NPU训练的loss图从一开始就未收敛,而GPU则正常收敛。通过使用Ascend开源仓的msprobe工具进行精度对比,发现NPU丢失了image_embedding的梯度,原因在于torch_npu版本与PyTorch不匹配,导致`repeat_interleave_backward_tensor`函数调用失败。最终通过选择与PyTorch配套的torch_npu版本解决了问题,loss图恢复正常。
MindIE+MindFormers推理方案指导
本文介绍了昇腾大模型推理解决方案MindIE+MindFormers.
|
4天前
|
Intel技术专家:oneAPI 开放式加速计算|龙蜥大讲堂第114期
这次分享的主题是《oneAPI 开放式加速计算 龙蜥大讲堂第 114 期》的主要内容。主要分为四个部分: 1. 发展背景 2. 什么是 oneAPI 3. 产品应用 4. 总结展望
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
|
5天前
|
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
|
6天前
| |
TorchOptimizer:基于贝叶斯优化的PyTorch Lightning超参数调优框架
TorchOptimizer 是一个基于贝叶斯优化方法的超参数优化框架,专为 PyTorch Lightning 模型设计。它通过高斯过程建模目标函数,实现智能化的超参数组合选择,并利用并行计算加速优化过程。该框架支持自定义约束条件、日志记录和检查点机制,显著提升模型性能,适用于各种规模的深度学习项目。相比传统方法,TorchOptimizer 能更高效地确定最优超参数配置。
|
7天前
|
《探索鸿蒙Next上人工智能图像编辑应用的技术路径》
在鸿蒙Next系统的支持下,AI图像编辑应用迎来新机遇。开发者可利用系统原生AI能力(如智能识别、OCR文字识别与抠图),集成第三方AI框架(如TensorFlow、PyTorch),运用分布式技术实现多设备协同编辑,并采用微内核架构和原子化服务提升安全性和用户体验。此外,优化用户交互设计,提供简洁直观的操作界面,确保应用高效稳定运行。
|
10天前
|
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
免费试用