决策智能

首页 标签 决策智能
# 决策智能 #
关注
2466内容
multi-agent:多角色Agent协同合作,高效完成复杂任务
随着LLM的涌现,以LLM为中枢构建的Agent系统在近期受到了广泛的关注。Agent系统旨在利用LLM的归纳推理能力,通过为不同的Agent分配角色与任务信息,并配备相应的工具插件,从而完成复杂的任务。
一文读懂deepSpeed:深度学习训练的并行化
DeepSpeed 是由微软开发的开源深度学习优化库,旨在提高大规模模型训练的效率和可扩展性。通过创新的并行化策略、内存优化技术(如 ZeRO)及混合精度训练,DeepSpeed 显著提升了训练速度并降低了资源需求。它支持多种并行方法,包括数据并行、模型并行和流水线并行,同时与 PyTorch 等主流框架无缝集成,提供了易用的 API 和丰富的文档支持。DeepSpeed 不仅大幅减少了内存占用,还通过自动混合精度训练提高了计算效率,降低了能耗。其开源特性促进了 AI 行业的整体进步,使得更多研究者和开发者能够利用先进优化技术,推动了 AI 在各个领域的广泛应用。
Agno:18.7K Star!快速构建多模态智能体的轻量级框架,运行速度比LangGraph快5000倍!
Agno 是一个用于构建多模态智能体的轻量级框架,支持文本、图像、音频和视频等多种数据模态,能够快速创建智能体并实现高效协作。
通义实验室Mobile-Agent-v3开源,全平台SOTA的GUI智能体,支持手机电脑等多平台交互
近日,通义实验室MobileAgent团队正式开源全新图形界面交互基础模型 GUI-Owl,并同步推出支持多智能体协同的自动化框架 Mobile-Agent-v3。该模型基于Qwen2.5-VL打造,在手机端与电脑端共8个GUI任务榜单中全面刷新开源模型性能纪录,达成全平台SOTA。
基于阿里云通义星尘实现多智能体(Multi-agent)协同工作的构想与尝试
近年来,大规模预训练模型(大模型)快速发展,其能力显著增强,尤其是在语言理解和生成方面取得了突破。然而,尽管大模型强大,但仍需被动响应指令,为此,研究转向了更具自主性的新范式——智能体(AI agent)。不同于仅执行命令的大模型,智能体不仅能理解复杂指令,还能规划行动步骤并在特定领域自我学习与改进。为进一步提高处理复杂任务的能力,多智能体(Multi-Agent)系统应运而生,多个智能体通过协作、交流信息和共享资源,共同完成更为复杂精细的任务。本文探讨了如何利用阿里云的通义星尘实现基础的多智能体协同工作,介绍了智能体的概念、优势及局限性,并通过具体案例展示了如何构建协作型多智能体系统。
如何构建和调优高可用性的Agent?浅谈阿里云服务领域Agent构建的方法论
本文深入探讨了Agent智能体的概念、技术挑战及实际落地方法,涵盖了从狭义到广义的Agent定义、构建过程中的四大挑战(效果不稳定、规划权衡、领域知识集成、响应速度),并提出了相应的解决方案。文章结合阿里云服务领域的实践经验,总结了Agent构建与调优的完整路径,为推动Agent在To B领域的应用提供了有价值的参考。
深入浅出智能工作流(Agentic Workflow)|技术干货
著名AI学者、斯坦福大学教授吴恩达提出AI Agent的四种设计方式后,Agentic Workflow(智能体工作流)在全球范围内迅速走红,多个行业纷纷实践其应用,并推动了新的Agentic AI探索热潮。吴恩达总结了Agent设计的四种模式:自我反思、工具调用、规划设计及多智能体协作。前两者较普及,后两者则为智能体使用模式从单一大模型向多智能体协同配合完成业务流程的转变奠定了基础。
|
12月前
| |
使用Qwen2.5+SpringBoot+SpringAI+SpringWebFlux的基于意图识别的多智能体架构方案
本项目旨在解决智能体的“超级入口”问题,通过开发基于意图识别的多智能体框架,实现用户通过单一交互入口使用所有智能体。项目依托阿里开源的Qwen2.5大模型,利用其强大的FunctionCall能力,精准识别用户意图并调用相应智能体。 核心功能包括: - 意图识别:基于Qwen2.5的大模型方法调用能力,准确识别用户意图。 - 业务调用中心:解耦框架与业务逻辑,集中处理业务方法调用,提升系统灵活性。 - 会话管理:支持连续对话,保存用户会话历史,确保上下文连贯性。 - 流式返回:支持打字机效果的流式返回,增强用户体验。 感谢Qwen2.5系列大模型的支持,使项目得以顺利实施。
|
5天前
|
构建AI智能体:四十八、从单体智能到群体智能:A2A协议如何重塑人机协作新范式
本文介绍了基于A2A(Agent-to-Agent)协议的智能代理系统在篮球赛安排中的应用。该系统通过多代理协作(天气、场地、日历、通知代理)实现自动化决策,相比传统API具有动态发现、语义化描述和自主决策优势。文章详细阐述了单代理(天气查询)到多代理系统的演进过程,展示了A2A协议在服务发现、任务标准化和安全通信方面的核心技术特性。该系统采用分级决策机制,优先检查天气安全条件,再验证场地和参与者可用性,最后触发通知流程,体现了分布式智能的协同效应和业务敏捷性。
免费试用