决策智能

首页 标签 决策智能
# 决策智能 #
关注
2466内容
|
2月前
| |
来自: 云原生
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
Mobile-Agent:通过视觉感知实现自动化手机操作,支持多应用跨平台
Mobile-Agent 是一款基于多模态大语言模型的智能代理,能够通过视觉感知自主完成复杂的移动设备操作任务,支持跨应用操作和纯视觉解决方案。
腾讯AI单挑王者荣耀职业玩家,“绝悟”技术细节首次披露!
腾讯王者荣耀AI“绝悟”的论文终于发表了!“绝悟”制霸王者荣耀世界冠军杯、在2100多场和顶级业余玩家体验测试中胜率达到99.8%。腾讯AI Lab提出一种深度强化学习框架,并探索了一些算法层面的创新,对MOBA 1v1 游戏这样的多智能体竞争环境进行了大规模的高效探索。
2025年智能体平台排名:第一梯队企业盘点与选型指南
AI智能体正从“被动响应”走向“主动决策”,成为企业数字化转型的核心驱动力。本文基于Gartner、IDC报告及全球500强实践,解析智能体市场趋势、第一梯队企业优势,并提供选型框架,助力企业避开“概念陷阱”,选出真正可落地的智能体平台,推动业务增长与智能化升级。
主流多智能体框架设计原理
本文描述了关于智能体(Agents)和多智能体系统(Multi-Agent Systems, MAS)的详尽介绍,涵盖了从定义、分类到具体实现框架的多个方面。
multi-agent:多角色Agent协同合作,高效完成复杂任务
随着LLM的涌现,以LLM为中枢构建的Agent系统在近期受到了广泛的关注。Agent系统旨在利用LLM的归纳推理能力,通过为不同的Agent分配角色与任务信息,并配备相应的工具插件,从而完成复杂的任务。
一文读懂deepSpeed:深度学习训练的并行化
DeepSpeed 是由微软开发的开源深度学习优化库,旨在提高大规模模型训练的效率和可扩展性。通过创新的并行化策略、内存优化技术(如 ZeRO)及混合精度训练,DeepSpeed 显著提升了训练速度并降低了资源需求。它支持多种并行方法,包括数据并行、模型并行和流水线并行,同时与 PyTorch 等主流框架无缝集成,提供了易用的 API 和丰富的文档支持。DeepSpeed 不仅大幅减少了内存占用,还通过自动混合精度训练提高了计算效率,降低了能耗。其开源特性促进了 AI 行业的整体进步,使得更多研究者和开发者能够利用先进优化技术,推动了 AI 在各个领域的广泛应用。
Agno:18.7K Star!快速构建多模态智能体的轻量级框架,运行速度比LangGraph快5000倍!
Agno 是一个用于构建多模态智能体的轻量级框架,支持文本、图像、音频和视频等多种数据模态,能够快速创建智能体并实现高效协作。
通义实验室Mobile-Agent-v3开源,全平台SOTA的GUI智能体,支持手机电脑等多平台交互
近日,通义实验室MobileAgent团队正式开源全新图形界面交互基础模型 GUI-Owl,并同步推出支持多智能体协同的自动化框架 Mobile-Agent-v3。该模型基于Qwen2.5-VL打造,在手机端与电脑端共8个GUI任务榜单中全面刷新开源模型性能纪录,达成全平台SOTA。
免费试用