知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3505内容
基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 智能工具调用决策的智能体
本文介绍了一种基于阿里云百炼平台的`qwen-max` API构建的智能体方案,该方案集成了检索增强、图谱增强及智能工具调用决策三大模块,旨在通过结合外部数据源、知识图谱和自动化决策提高智能回答的准确性和丰富度。通过具体代码示例展示了如何实现这些功能,最终形成一个能灵活应对多种查询需求的智能系统。
|
11月前
|
七种RAG架构cheat sheet!
RAG 即检索增强生成,是一种结合检索技术和生成模型的人工智能方法。Weaviate厂商给出了七种RAG架构cheat sheet。
基础与构建:GraphRAG架构解析及其在知识图谱中的应用
【10月更文挑战第11天】随着数据的不断增长和复杂化,传统的信息检索和生成方法面临着越来越多的挑战。特别是在处理结构化和半结构化数据时,如何高效地提取、理解和生成内容变得尤为重要。近年来,一种名为Graph Retrieval-Augmented Generation (GraphRAG) 的新架构被提出,它结合了图神经网络(GNNs)和预训练语言模型,以提高多模态数据的理解和生成能力。本文将深入探讨GraphRAG的基础原理、架构设计,并通过实际代码示例展示其在知识图谱中的应用。
|
6月前
|
AI专业术语解析
本文围绕AI领域常见专业术语展开解析,涵盖基础概念、模型与算法、数据处理、生成式人工智能、自然语言处理等多个方面。基础概念类包括人工智能、机器学习、深度学习等,详细阐述其定义、原理及应用场景。模型与算法类涉及支持向量机、决策树、生成对抗网络等。数据处理类介绍了数据标注、特征工程、模型评估等。生成式人工智能相关术语有生成式AI、文本生成、图像生成等。自然语言处理方面涵盖分词、词向量、注意力机制等。此外,还解释了大模型、小样本学习、端到端、对齐等其他专业术语,为读者理解AI领域提供了全面且深入的参考。
让AI读懂代码需求:模块化大模型微调助力高效代码理解与迁移
本文介绍了一种解决开源项目代码升级中“用户需求关联相应代码”难题的创新方法。面对传统Code RAG和Code Agent在召回率、准确率和稳定性上的不足,以及领域“黑话”和代码风格差异带来的挑战,作者团队提出并实践了一套以大模型微调(SFT)为核心的解决方案。
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
1月前
|
LightRAG 实战: 基于 Ollama 搭建带知识图谱的可控 RAG 系统
LightRAG 是一款开源、模块化的检索增强生成(RAG)框架,支持快速构建基于知识图谱与向量检索的混合搜索系统。它兼容多种LLM与嵌入模型,如Ollama、Gemini等,提供灵活配置和本地部署能力,助力高效、准确的问答系统开发。
|
6月前
|
2025年国内主流智能客服系统:技术架构与能力深度解析
本文分析了2025年国内智能客服市场的技术格局与系统能力,从核心技术栈(NLP、知识图谱、语音技术等)到市场梯队划分,深入探讨了第一梯队的综合型平台和第二梯队的场景化服务。以合力亿捷为例,剖析其端到端AI技术栈、大模型融合、全渠道融合及运营优化能力,并对比国际顶尖通用AI在语义理解、多模态交互和自主学习方面的启示。最后为企业提供选择智能客服系统的五大考量因素,强调技术与业务场景的深度融合,助力企业实现更高效、智能的客户服务体验。
面向认知智能的AI推理体系:理论基础与工程实践
本文深入探讨了AI推理从“感知智能”迈向“认知智能”的理论框架与技术突破。文章分析了符号推理、神经推理及混合推理的优劣势,指出了多跳推理、因果推理和可解释性等挑战。同时,结合大语言模型、ReAct架构和知识增强推理等前沿技术,展示了AI推理在代码实现中的应用。未来,认知图谱、推理驱动的智能体、边缘推理优化及人机协同将成为重要方向,推动AI向通用人工智能(AGI)迈进。
从0搭建AI智能客服教程(AI智能客服系统选型和实战指南)
针对智能客服技术与业务脱节的痛点,合力亿捷通过 NLP、知识图谱及人机协同策略,助企业实现首次解决率超 70%、人力成本降 43%、年省成本超千万。其方案提升制造业问题解决率 40%,投诉转接成功率达 99%,以分场景选型助力超万家企业平衡业务与成本,成行业首选。
免费试用