构建AI智能体:五十一、深思熟虑智能体:从BDI架构到认知推理的完整流程体系
本文系统介绍了深思熟虑智能体(Deliberative Agent)及其核心BDI架构。智能体通过信念(Beliefs)、愿望(Desires)、意图(Intentions)三个核心组件实现复杂决策:信念系统维护环境认知,愿望系统管理目标设定,意图系统执行行动计划。文章详细阐述了智能体的状态管理、推理机制和完整决策流程,并通过一个学术研究助手的设计示例,展示了如何实现从环境感知、计划制定到执行反思的完整认知循环。这种架构使智能体能够进行深度思考、规划和学习,而非简单反应式响应,代表了人工智能从工具性向认知性
具身智能核心突破:物理模拟器与世界模型协同技术拆解
本文系统综述了物理模拟器与世界模型在具身智能发展中的协同作用,提出五级智能机器人分类体系(IR-L0至IR-L4),分析其在运动、操作与交互中的进展,并对比主流仿真平台与世界模型架构,探讨其在自动驾驶与关节机器人中的应用及未来挑战。
AI 十大论文精讲(八):知识蒸馏如何让大模型 “瘦身不减能”
本篇解读DistilBERT,一篇解决大模型落地难题的里程碑论文。面对BERT等大模型参数多、耗能高、部署难的问题,DistilBERT提出预训练阶段知识蒸馏,结合三重损失与轻量化设计,在保留97%性能的同时,模型缩小40%,推理提速60%,推动NLP迈向高效、绿色、边缘化应用。