从基础到人脸识别与目标检测

本文涉及的产品
资源编排,不限时长
简介: 前言从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。颜色编码格式,图像格式和视频压缩格式(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。rgb8图像格式:常用于显示系统,如电视和计算机屏幕。 RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色

前言

从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。

颜色编码格式,图像格式和视频压缩格式

(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。

rgb8图像格式:常用于显示系统,如电视和计算机屏幕。
  RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色。
  例如: (255,0,0) 表示红色,(0,255,0) 表示绿色,(0,0,255) 表示蓝色。
bgr8图像格式:由一些特定的硬件制造商采用,
  软件方面最著名的就是opencv,其默认使用BGR的颜色格式来处理图像。
  与RGB不同, (0,0,255) 在BGR中表示红色,(0,255,0) 仍然表示绿色,(255,0,0) 表示蓝色。

在自动驾驶里,使用rgb8图像格式的图像,一般称为原图,是数据量最大的格式,没有任何压缩。(2)(2)YUV:这是另一种颜色编码方法,与RGB模型不同的是,它将图像信息分解为亮度(Y)和色度(U和V)两部分。这种方式更接近于人类对颜色的感知方式。

Y:代表亮度信息,也就是灰阶值。
U:从色度信号中减去Y得到的蓝色信号的差异值。
V:从色度信号中减去Y得到的红色信号的差异值。

YUV颜色编码主要用在电视系统以及视频编解码标准中,在这些系统中,Y通道信息可以单独使用,这样黑白电视机也能接收和显示信号。而彩色信息则通过U和V两个通道传输,只有彩色电视机才能处理。这样设计兼容了黑白电视和彩色电视。YUV色彩空间相比RGB色彩空间,更加符合人眼对亮度和色彩的敏感度,在视频压缩时,可以按照人眼的敏感度对YUV数据进行压缩,以达到更高的压缩比。由于历史和技术的原因,YUV的标准存在多种,例如YUV 4:4:4、YUV 4:2:2和YUV 4:2:0等,这些主要是针对U和V通道的采样方式不同定义的。采样不同,对应的压缩比也不同。

(3)图像压缩格式

jpeg:Joint Photographic Experts Group,是一种常见的用于静态图像的损失性压缩格式,
  它特别适合于全彩色和灰度图片,被广泛使用。
  通常情况下,JPEG可以提供10:1到20:1的有损压缩比,根据图像质量自由调整。
png: Portable Network Graphics,PNG是一种无损压缩格式,主要使用了DEFLATE算法。
  由于这是无损压缩,所以解压缩图像可以完全恢复原始数据。
  被广泛应用于需要高质量图像的场景,如网页设计、艺术作品等。
bmp:Bitmap,BMP是Windows系统中常用的一种无压缩的位图图像格式,通常会创造出较大的文件。

位图(Bitmap)是一种常见的计算机图形,最小单位是像素,每个像素都包含一定量的信息,如颜色和亮度等。位图图像的一个主要特点就是,在放大查看时,可以看到图像的像素化现象,也就是我们常说的"马赛克"。BMP、JPEG、GIF、PNG等都是常见的位图格式。

(4)H264和H265:这是两个视频压缩格式,也是两种视频编解码标准。以1280*720的摄像头为例,如果是rgb8格式的原图,一帧图像的大小是:

3*1280*720=27648000字节,即2.7648MB

如果是一小时的视频,那将是非常大的数据量,对网络传输,数据存储,都是很大的压力。而H264通过种种帧间操作,可以达到10:1到50:1的压缩比,甚至更高。H265更进一步,压缩比更高,用来解决4K或8K视频的传输。

更具体的原理见:图像编码与 H264 基础知识在自动驾驶领域,图像数据也使用h264格式,主要用于数采和回放,控制数据量。

usb_cam

(1)linux针对摄像头硬件有一套Video for Linux内核驱动框架,对应提供的有命令行工具 v4l2-ctl (Video for Linux 2),可以查看摄像头硬件信息:

ls /dev/video0  //一般video0是笔记本自带摄像头设备文件
v4l2-ctl -d /dev/video0 --all

这里截取了部分关键信息,下面的usb_cam的launch文件将用到:

(2)usb_cam是ros里usb camera的软件包,一般称为ros摄像头驱动,但这是一个应用程序,其调用v4l2并通过ros topic发出图像数据。搞机器视觉,第一步就是要有图。安装并启动usb_cam,查看图像:

sudo apt-get install ros-noetic-usb-cam 
roslaunch usb_cam usb_cam-test.launch
rqt_image_view

usb_cam-test.launch:

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    //指定设备文件名,默认是/dev/video0
    <param name="video_device" value="/dev/video0" />
    // 宽和高分辨率 
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    // 像素编码,可选值:mjpeg,yuyv,uyvy
    <param name="pixel_format" value="yuyv" />
    <param name="color_format" value="yuv422p" />
    // camera坐标系名
    <param name="camera_frame_id" value="usb_cam" />
    // IO通道,可选值:mmap,read,userptr,大数据量信息一般用mmap
    <param name="io_method" value="mmap"/>
  </node>
  <node name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen">
    // 指定发出的topic名:/usb_cam/image_raw
    <remap from="image" to="/usb_cam/image_raw"/>
    <param name="autosize" value="true" />
  </node>
</launch>

(3)/usb_cam/image_raw的数据结构体:

rostopic info /usb_cam/image_raw
rosmsg show  sensor_msgs/Image
//消息头,每个topic都有
std_msgs/Header header  
  uint32 seq
  time stamp
  // 坐标系名
  string frame_id
// 高和宽分辨率
uint32 height
uint32 width
// 无压缩的图像编码格式,包括rgb8,YUV444
string encoding
// 图像数据的大小端存储模式
uint8 is_bigendian
// 一行图像数据的字节数量,作为步长参数
uint32 step
// 存储图像数据的柔性数组,大小是step*height
uint8[] data

/usb_cam/image_raw内容展示:

(4)/usb_cam/image_raw/compressed的数据结构体:

rostopic info /usb_cam/image_raw/compressed
rosmsg show sensor_msgs/CompressedImage
std_msgs/Header header
  uint32 seq
  time stamp
  string frame_id
// 压缩的图像编码格式,jpeg,png
string format
uint8[] data

/usb_cam/image_raw/compressed内容展示:

摄像头标定

标定引入

(1)Calibration:翻译过来就是校准和标定。(2)摄像头标定:Camera Calibration是计算机视觉中的一种关键技术,其目的是确定摄像头的内部参数(Intrinsic Parameters)和外部参数(Extrinsic Parameters)。

内部参数:包括焦距、主点坐标以及镜头畸变等因素。
  这些参数与相机本身的硬件有关,如镜头和图像传感器等,一般由厂家提供。
外部参数:摄像头相对于环境的位置和方向。
  例如,它可能描述了一个固定摄像头相对于周围环境的姿态或者安装位置。
  以汽车为例,外参包括各个摄像头之间的关系,摄像头与radar,摄像头与lidar的关系。

(3)汽车各种传感器的之间的相对位置和朝向,用3自由度的旋转矩阵和3自由度的平移向量表示,这些外参由整车厂自己标。一般整车下线之后,进入特定的房间,使用静态标靶、定位器的等高精度设备,完成Camera、radar、Lidar等传感器的标定,称之为产线标定,也叫做下线标定。

笔记本摄像头内参标定

这里我们使用标定常用的标靶图形,完成笔记本摄像头的内参标定。usb_cam可以使用内参标定,避免图像畸变。(1)安装标定功能包(ubuntu20.04+noetic)

sudo apt-get install ros-noetic-camera-calibration

(2)创建 robot_vision 软件包,并标定相关文件

cd ~/catkin_ws/src
catkin_create_pkg robot_vision cv_bridge image_transport sensor_msgs std_msgs geometry_msgs message_generation roscpp rospy
cd robot_vision 
mkdir doc launch
touch launch/cameta_calibration.launch

标定靶图片:

cameta_calibration.launch:

<launch>
  // 使用usb_cam包,发出/usb_cam/image_raw图像数据
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  // 使用标定功能包,完成标定。
  // 参数中,8x6表示横向8个内部角点,竖向有6个
  // square 是每个棋盘格的边长
  // /usb_cam/image_raw是监听的图像topic
  <node
      pkg="camera_calibration"
      type="cameracalibrator.py"
      name="camera_calibration"
      output="screen"
      args="--size 8x6 --square 0.024 image:=/usb_cam/image_raw camera:=/usb_cam"
  />
</launch>

(3)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cameta_calibration.launch

不断晃动,直到COMMIT按键亮起,然后点击,即可生成标定文件,本人的路径为:/home/mm/.ros/camera_info/head_camera.yaml。

opencv和cv_bridge引入

(1)opencv和cv_bridge

安装opencv(ubuntu20.04+noetic):

sudo apt-get install ros-noetic-vision-opencv libopencv-dev python3-opencv

(2)opencv和cv_bridge的简单架构图如下:

根据这个图,在ros里,处理图像的流程一般是:

# 第一步:使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
  cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")
  # 第二步:使用opencv进行图像处理
  。。。
  
  # 第三步,再将opencv格式额数据转换成ros image格式的数据
  ros_image = cv_bridge.cv2_to_imgmsg(cv_image, "bgr8")

(3)在 上节的robot_vision包里,我们新增一个cv_bridge的小样例,主要功能是在捕捉到的图像上打个蓝色的圆标。

本文不深入讲解opencv,推荐一个资料:W3Cschool - OpenCV教程

cv_bridge_test.py:

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import rospy
import cv2
from functools import partial
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
def image_cb(msg, cv_bridge, image_pub):
    # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
    try:
        cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")
    except CvBridgeError as e:
        print(e)
    # 在opencv的显示窗口中绘制一个圆,作为标记
    # cv_image.shape返回一个元组,包含图像的行数(高度),列数(宽度)和通道数(通常是3个通道:BGR)
    (rows, cols, channels) = cv_image.shape
    # 当图像的宽度和高度都大于60时,才执行画圆标动作
    if cols > 60 and rows > 60:
      # 在计算机图像处理中,图像的原点(0,0)通常定义为图像的左上角。(60,60)是圆心的坐标。
      # 30是圆的半径。
      # (255,0,0)定义了圆的颜色。在OpenCV中,默认的颜色空间是BGR,所以这其实是绘制了一个蓝色的圆。
      # -1表示填充圆。如果这个值是正数,则代表绘制的圆的线宽;如果是负数,则代表填充该圆。
        cv2.circle(cv_image, (60,60), 30, (255,0,0), -1)
    # 使用Opencv的接口,显示Opencv格式的图像
    cv2.imshow("ycao: opencv image window", cv_image)
    cv2.waitKey(3)
    # 再将opencv格式额数据转换成ros image格式的数据发布
    try:
        image_pub.publish(cv_bridge.cv2_to_imgmsg(cv_image, "bgr8"))
    except CvBridgeError as e:
        print(e)
def main():
    rospy.init_node("cv_bridge_test")
    rospy.loginfo("starting cv_bridge_test node")
    bridge = CvBridge()
    image_pub = rospy.Publisher("/cv_bridge_image", Image, queue_size=1)
    bind_image_cb = partial(image_cb, cv_bridge=bridge, image_pub=image_pub)
  // 订阅/usb_cam/image_raw,然后再回调函数里处理图像,并发布出来
    rospy.Subscriber("/usb_cam/image_raw", Image, bind_image_cb)
    rospy.spin()
    cv2.destroyAllWindows()
if __name__ == "__main__":
    main()

cv_bridge_test.launch

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  <node
      pkg="robot_vision"
      type="cv_bridge_test.py"
      name="cv_bridge_test"
      output="screen"
  />
  <node
      pkg="rqt_image_view"
      type="rqt_image_view"
      name="rqt_image_view"
      output="screen"
  />
</launch>

(4)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cv_bridge_test.launch

总结

本文主要系统介绍了机器视觉处理的外围知识,引入了opencv和cv_bridge,后面几篇文章,我们将用它们继续丰富 robot_vision 软件包。

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
相关文章
|
15天前
|
存储 传感器 编解码
ROS机器视觉入门:从基础到人脸识别与目标检测
【11月更文挑战第9天】从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。
124 56
|
5月前
|
机器学习/深度学习 监控 算法框架/工具
使用Python实现深度学习模型:人脸识别与人脸表情分析
【7月更文挑战第18天】 使用Python实现深度学习模型:人脸识别与人脸表情分析
222 2
|
7月前
|
机器学习/深度学习 监控 算法
利用深度学习技术实现人脸识别系统
人脸识别技术在当今社会得到了广泛应用,其中深度学习算法的发展为人脸识别系统的性能提升提供了强大支持。本文将介绍如何利用深度学习技术构建一个高效的人脸识别系统,包括数据准备、模型选择、训练过程和系统部署等方面的内容。
|
机器学习/深度学习 搜索推荐 计算机视觉
【阿里云OpenVI-人脸感知理解系列之人脸识别】基于Transformer的人脸识别新框架TransFace ICCV-2023论文深入解读
本文介绍 阿里云开放视觉智能团队 被计算机视觉顶级国际会议ICCV 2023接收的论文 &quot;TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective&quot;。TransFace旨在探索ViT在人脸识别任务上表现不佳的原因,并从data-centric的角度去提升ViT在人脸识别任务上的性能。
2190 341
|
机器学习/深度学习 计算机视觉
计算机视觉:人脸识别与检测
计算机视觉:人脸识别与检测
127 0
|
计算机视觉 Python
11 OpenCV图像识别之人脸识别
Eigenfaces是一种基于PCA(Principal Component Analysis,主成分分析)的人脸识别方法,属于OpenCV中的特征脸方法之一。该方法将人脸图像转换为低维的特征向量,使用PCA降维的方式提取出训练集中的主成分特征,进而提取出人脸图像的特征向量。在进行识别时,通过比较输入图像与训练集中每个图像的特征向量的相似度来判断其所属的人脸类别。
|
小程序 计算机视觉
FaceApi 人脸识别技术点
FaceApi 人脸识别技术点
159 0
|
计算机视觉
人脸识别之facenet解读与技术点
人脸识别之facenet解读与技术点
134 0
|
机器学习/深度学习 人工智能 文字识别
使用LabVIEW 实现物体识别、图像分割、文字识别、人脸识别等深度视觉
使用LabVIEW 实现物体识别、图像分割、文字识别、人脸识别等深度视觉
392 0
|
存储 算法 数据库
人脸识别数据集
人脸识别数据集