时序数据库

首页 标签 时序数据库
# 时序数据库 #
关注
1127内容
实时计算 Flink版操作报错之表可以自动建,但数据无法导入,连接Starrocks 的be时候,报错,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
InfluxDB有哪些新特性?
【5月更文挑战第13天】InfluxDB有哪些新特性?
时序数据库的优势有哪些?
【5月更文挑战第13天】时序数据库的优势有哪些?
查询提速11倍、资源节省70%,阿里云数据库内核版 Apache Doris 在网易日志和时序场景的实践
网易的灵犀办公和云信利用 Apache Doris 改进了大规模日志和时序数据处理,取代了 Elasticsearch 和 InfluxDB。Doris 实现了更低的服务器资源消耗和更高的查询性能,相比 Elasticsearch,查询速度提升至少 11 倍,存储资源节省达 70%。Doris 的列式存储、高压缩比和倒排索引等功能,优化了日志和时序数据的存储与分析,降低了存储成本并提高了查询效率。在灵犀办公和云信的实际应用中,Doris 显示出显著的性能优势,成功应对了数据增长带来的挑战。
InfluxDB与Telegraf:数据采集与监控实战
【4月更文挑战第30天】本文介绍了InfluxDB和Telegraf在数据采集与监控中的应用。InfluxDB是高性能的时序数据库,适合高吞吐量和实时查询,而Telegraf是数据采集代理,能收集多种系统指标并发送至InfluxDB。实战部分涉及安装配置两者,通过Telegraf收集数据,然后使用InfluxDB查询分析,配合Grafana实现可视化展示,从而实现有效的监控解决方案。
InfluxDB数据备份与恢复策略
【4月更文挑战第30天】本文介绍了InfluxDB的时间序列数据备份与恢复策略。备份策略包括定期快照备份、增量备份(借助外部工具如rsync)及备份验证。恢复策略涉及从快照和备份验证环境恢复数据,强调了恢复过程中的注意事项,如关闭写入操作和数据一致性。实施这些策略能有效保障InfluxDB数据的安全性和可用性。
InfluxDB高级特性:数据压缩与存储优化技术详解
【4月更文挑战第30天】InfluxDB,流行的开源时序数据库,采用LSM Tree存储引擎,利用WAL和TSM文件高效存储数据。其高级特性包括数据压缩(Snappy、Gorilla、Delta编码)和存储优化(时间序列分区、数据块合并、删除与归档)。通过选择合适的压缩算法、设置分区策略、定期合并数据块及制定保留策略,可优化InfluxDB性能和存储效率。
InfluxDB最佳实践:数据模型设计与查询优化
【4月更文挑战第30天】本文探讨了InfluxDB的最佳实践,重点在于数据模型设计和查询优化。合理选择字段类型,根据业务逻辑划分Measurement,利用Tags进行索引优化,以及适时数据归档和清理,能有效提升性能。查询优化包括使用索引、精简查询语句、应用聚合函数及限制返回结果。分布式查询和分片适用于大规模数据集,以实现并行查询和负载均衡。这些策略旨在帮助用户优化InfluxDB的性能,进行高效时序数据分析。
免费试用