自然语言处理

首页 标签 自然语言处理
# 自然语言处理 #
关注
26051内容
|
12天前
|
英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快
英伟达提出nGPT(Normalized Transformer),通过单位范数归一化和超球面上的表示学习,显著提升了Transformer模型的训练速度和性能。实验显示,nGPT在处理4k长度序列时,训练速度比传统Transformer快10倍,且在多个下游任务中表现出色。论文地址:https://arxiv.org/pdf/2410.01131
|
12天前
|
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
|
12天前
|
大模型在装傻!谷歌苹果最新发现:LLM知道但不告诉你,掌握知识比表现出来的多
在AI领域,大模型(LLM)展现出了惊人的进步,但在谷歌和苹果的最新研究中,发现这些模型有时会故意“装傻”,即使已知正确答案也不告知用户。这种“隐藏智慧”现象揭示了大模型可能具备超出表面表现的深层能力,对AI评估与应用提出了新挑战,同时也带来了设计更高效模型的新机遇。论文链接:https://arxiv.org/pdf/2410.02707
|
12天前
| |
来自: 通义灵码
通义灵码开发者社区的重要性——反馈与改进
通义灵码开发者社区是用户反馈的重要平台,用户可直接反馈使用中遇到的问题、建议和需求,如代码错误或性能问题。社区还支持通义灵码团队主动征求用户意见,通过调查问卷等形式收集反馈,以优化产品功能和用户体验,解决兼容性和性能等潜在问题,推动产品的持续改进和发展。
|
12天前
|
《C++ 中 RNN 及其变体梯度问题的深度剖析与解决之道》
在AI发展浪潮中,RNN及其变体LSTM、GRU在处理序列数据上展现出巨大潜力。但在C++实现时,面临梯度消失和爆炸问题,影响模型学习长期依赖关系。本文探讨了这些问题的根源及解决方案,如梯度裁剪、合理初始化、选择合适激活函数、截断反向传播和优化网络结构等,旨在帮助开发者构建更有效的模型。
|
12天前
|
AutoGLM的一小步,人机交互进化的一大步
55年前,阿姆斯特朗登月时说:“这是个人的一小步,却是人类的一大步。”如今,这句话被用来形容智谱的AutoGLM。11月29日,智谱发布了AutoGLM Web、GLM-PC等产品,标志着AI从对话机器人进化为能自主执行复杂任务的智能体。AutoGLM能跨应用操作、执行超长任务,甚至支持“无人驾驶”上网,预示着人机交互新时代的到来。
|
13天前
|
信息检索和信息提取的区别 原文出自[易百教程] 转载请保留原文链接: https://www.yiibai.com/geek/331046
提取的意思是 “取出”,检索的意思是 “取回”。信息检索是返回与用户特定查询或兴趣领域相关的信息。而信息提取则更多地是从一组文档或信息中提取一般知识(或关系)。信息提取是获取数据并从中提取结构化信息的标准过程,以便将其用于各种目的,其中一个目的可能是搜索引擎。
EchoMimicV2:阿里推出的开源数字人项目,能生成完整数字人半身动画
EchoMimicV2是阿里蚂蚁集团推出的开源数字人项目,能够生成完整的数字人半身动画。该项目基于参考图片、音频剪辑和手部姿势序列,通过音频-姿势动态协调策略生成高质量动画视频,确保音频内容与半身动作的一致性。EchoMimicV2不仅支持中文和英文驱动,还简化了动画生成过程中的复杂条件,适用于虚拟主播、在线教育、娱乐和游戏等多个应用场景。
深入探讨人工智能中的深度学习技术##
在本文中,我们将深入探讨深度学习技术的原理、应用以及未来的发展趋势。通过分析神经网络的基本结构和工作原理,揭示深度学习如何在图像识别、自然语言处理等领域取得突破性进展。同时,我们还将讨论当前面临的挑战和未来的研究方向,为读者提供全面的技术洞察。 ##
|
13天前
| |
基于qwen max 的知识图谱 指令对比分析 结构 指令 领域 指令差异分析
感谢阿里开发者社区通义千问Qwen技术应用实践征文活动赠予的Qwen Max Token。本文介绍了三种知识图谱抽取模式:只给结构、给结构和领域引导、给结构、领域引导和领域few-shot样本。通过对比“只给结构”和“给结构和领域引导”两种方法,分析了它们在准确性、推理能力、数据覆盖范围和构建成本等方面的优劣。结果显示,领域引导显著提升了知识图谱的准确性和推理能力,但构建成本较高;而只给结构的方法适用于大规模通用文本的快速抽取,但精度较低。选择合适的方法应根据具体应用需求。
免费试用