梯度累积的隐藏陷阱:Transformer库中梯度累积机制的缺陷与修正
在本地微调大规模语言模型时,由于GPU显存限制,通常采用梯度累积技术来模拟大批次训练。然而,实际研究表明,梯度累积方法在主流深度学习框架中会导致模型性能显著下降,尤其是在多GPU环境中。本文详细探讨了梯度累积的基本原理、应用场景及存在的问题,并通过实验验证了修正方案的有效性。研究指出,该问题可能在过去多年中一直存在且未被发现,影响了模型的训练效果。
Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
深入解析:Elasticsearch集群性能调优策略与最佳实践
【10月更文挑战第8天】Elasticsearch 是一个分布式的、基于 RESTful 风格的搜索和数据分析引擎,它能够快速地存储、搜索和分析大量数据。随着企业对实时数据处理需求的增长,Elasticsearch 被广泛应用于日志分析、全文搜索、安全信息和事件管理(SIEM)等领域。然而,为了确保 Elasticsearch 集群能够高效运行并满足业务需求,需要进行一系列的性能调优工作。
轻松抓取:用 requests 库处理企业招聘信息中的联系方式
本文详细介绍如何利用Python的`requests`库结合代理IP技术,突破Boss直聘的登录验证与反爬虫机制,抓取企业招聘信息中的联系方式。文章首先阐述了Boss直聘数据抓取面临的挑战,随后介绍了代理IP轮换、登录会话保持及请求头伪装等关键技术。通过一个完整的示例代码,展示了从配置代理、模拟登录到解析HTML获取联系方式的具体步骤。此方法不仅适用于Boss直聘,还可扩展至其他需登录权限的网站抓取任务。
CDGA|利用人工智能与边缘计算显著提升数据治理效率与效果的实践案例
在当今数字化转型的浪潮中,数据已成为企业最宝贵的资产之一。然而,随着数据量的爆炸性增长,如何高效、安全地治理这些数据成为企业面临的重要挑战。人工智能(AI)与边缘计算技术的融合,为数据治理带来了前所未有的机遇。本文将通过实际案例,探讨如何利用AI与边缘计算显著提升数据治理的效率和效果。
驾驭股市大数据:Python实战指南
【10月更文挑战第1天】随着信息技术的发展,投资者现在能够访问到前所未有的海量金融数据。本文将指导您如何利用Python来抓取当前股市行情的大数据,并通过分析这些数据为自己提供决策支持。我们将介绍从数据获取到处理、分析以及可视化整个流程的技术方法。
只需四步,轻松开发三维模型Web应用
为了让用户更方便地应用三维模型,阿里云DataV提供了一套完整的三维模型Web模型开发方案,包括三维模型托管、应用开发、交互开发、应用分发等完整功能。只需69.3元/年,就能体验三维模型Web应用开发功能!
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
通过探索大语言模型(LLM)架构之间的潜在联系,我们可能开辟新途径,促进不同模型间的知识交流并提高整体效率。尽管Transformer仍是主流,但Mamba等线性循环神经网络(RNN)和状态空间模型(SSM)展现出巨大潜力。近期研究揭示了Transformer、RNN、SSM和矩阵混合器之间的深层联系,为跨架构的思想迁移提供了可能。本文深入探讨了这些架构间的相似性和差异,包括Transformer与RNN的关系、状态空间模型在自注意力机制中的隐含作用以及Mamba在特定条件下的重写方式。
Jenkins 在持续集成/持续交付(CI/CD)管道中的应用
【8月更文第31天】 在现代软件开发过程中,持续集成(Continuous Integration, CI)和持续交付(Continuous Delivery, CD)已经成为提升开发效率和软件质量的重要实践。Jenkins 是一个广泛使用的开源工具,它能够帮助团队实现自动化构建、测试和部署,是 CI/CD 流水线的核心组件之一。本文将详细介绍 Jenkins 在 CI/CD 管道中的应用,并提供具体的代码示例。
DevOps 文化建设:促进跨职能团队合作
【8月更文第30天】在当今快速变化的商业环境中,组织需要更快地交付高质量的产品和服务来满足客户需求。DevOps作为一种文化和实践,旨在通过改进开发(Dev)和运维(Ops)团队之间的协作来提高软件交付的速度和质量。本文将探讨如何构建一个积极的DevOps文化,并提供具体的策略和工具来加强团队间的沟通与协作。
高性能Web服务器架构设计
【8月更文第28天】在当今互联网时代,网站的响应速度直接影响用户体验和业务成功率。因此,构建一个高性能的Web服务器架构至关重要。本文将从硬件配置、软件架构以及网络设置三个方面探讨如何提高Web服务器的性能,并提供一些实际的代码示例。
淘宝商品评论 API 接口:深度解析用户评论,优化产品与服务
淘宝是领先的中国电商平台,其API为开发者提供商品信息、交易记录及用户评价等数据访问服务。对于获授权的开发者和商家,可通过申请API权限、获取并解析评论数据来进行情感分析和统计,进而优化产品设计、提升服务质量、增强用户互动及调整营销策略。未授权用户可能受限于数据访问。
淘宝商品销量数据接口:获取与利用全攻略
淘宝商品销量数据接口让开发者获取平台上商品的销量信息。首先,需在开放平台注册并创建应用;随后获取API密钥(appkey与appsecret),用于身份验证。参考官方文档了解接口详情,通过HTTP请求调用接口并设置参数如商品ID。接口返回JSON格式数据,需用编程语言解析提取销量数据。示例代码展示了如何使用Python和requests库调用接口及打印结果。使用时应遵守规定,避免违规行为,并关注接口更新。若无开发能力,可选用第三方服务但需谨慎评估。
DataWorks 数据服务 + BI 可视化分析报表 (搭建战报)
DataWorks 数据服务提供强大的数据 API 能力,并能与多种业界流行的 BI 报表 (DataV、QuickBI、PowerBI和Grafana) 结合,使用 API 数据源的好处是统一数据接口、统一权限管理、统一数据交换以及数据服务提供强大的各式各样的插件能力 (如缓存插件、流量控制插件、日志脱敏插件、断路器插件、IP访问控制插件、三方鉴权插件等),下文介绍各热门 BI 工具接入 DataWorks 数据服务的操作方式。
EasyAnimate-v3版本支持I2V及超长视频生成
阿里云人工智能平台(PAI)自研开源的视频生成项目EasyAnimate正式发布v3版本
Python实现Naive Bayes贝叶斯分类模型(GaussianNB、MultinomialNB算法)项目实战
Python实现Naive Bayes贝叶斯分类模型(GaussianNB、MultinomialNB算法)项目实战
「AIGC算法」爬山算法详解
**爬山算法是迭代求解优化问题的局部搜索方法,从随机解开始,逐步向邻域内更优解移动,直至达到局部极值。特点包括简单性、可能陷入局部最优和依赖初始解。应用包括调度、路径规划和参数调优。改进策略如随机重启、模拟退火和多起始点可帮助跳出局部最优。主要挑战是局部最优、平坦区域和高维问题。**
「AIGC」Agent AI智能体的未来:技术、伦理与经济的交汇点
Agent AI智能体融合机器学习与深度学习,推动社会效率与创新,但也引发伦理、法律及就业挑战。技术上,它们能自我优化、积累知识,如自动驾驶汽车通过学习改善驾驶。伦理上,需建立AI准则,确保透明度和责任归属,如医疗AI遵循道德原则。经济上,AI改变就业市场结构,创造新职业,如AI顾问,同时要求教育体系更新。未来,平衡技术进步与社会影响至关重要。
通义万相功能使用实战
【7月更文第2天】阿里云的通义万相是款AI绘画工具,让用户通过文本描述创建个性化头像。首先,注册阿里云账号并登录平台。明确头像风格、特征和背景,然后在平台上选择“文本生成图像”,输入详细描述。设定尺寸后提交生成。系统会提供多个选项,用户可选择、调整或重新生成。满意后下载头像,应用于社交平台。记得提供清晰的描述以获取最佳效果,勇于探索不同的创意组合。通义万相,让AI助你实现艺术想象。
Java一分钟之-Quasar协程:Java中的协程支持
【6月更文挑战第17天】Java并发处理中,Quasar库引入轻量级的纤程(Fiber)以提升效率。纤程在单线程内并发执行,减少资源消耗。常见问题包括内存泄漏、死锁和过度使用。要避免这些问题,需正确管理资源,使用协程友好的同步原语,以及合理规划纤程创建。安装Quasar时,在Maven项目中添加依赖。示例代码展示了如何启动纤程和通过通道进行异步通信。理解原理和最佳实践是关键。
实时计算 Flink版产品使用问题之如何将算子链断开
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
NumPy高效数组操作与性能调优手册
NumPy是Python数据科学的基础库,以其高效的数组操作著称。本文深入探讨了NumPy的数组基础,如创建和操作数组,并介绍了向量化运算、避免Python循环等高效技巧。此外,文章还提出了性能优化策略,包括使用内置函数、并行计算、减少数据类型转换、使用视图及有效管理内存,以帮助开发者在处理大规模数据时充分利用NumPy的性能优势。通过这些策略,可以实现更高效、快速的数据处理。【6月更文挑战第10天】
Pandas高级教程:数据清洗、转换与分析
Pandas是Python的数据分析库,提供Series和DataFrame数据结构及数据分析工具,便于数据清洗、转换和分析。本教程涵盖Pandas在数据清洗(如缺失值、重复值和异常值处理)、转换(数据类型转换和重塑)和分析(如描述性统计、分组聚合和可视化)的应用。通过学习Pandas,用户能更高效地处理和理解数据,为数据分析任务打下基础。
从提示工程到代理工程:构建高效AI代理的策略框架概述
该文探讨了AI代理的发展,特别是ChatGPT等模型如何展示了AI系统的潜力。文章提出从提示工程转向代理工程,定义了代理能力需求,并提出一个框架来设计和实施AI代理。代理工程涉及明确代理的任务、所需行动、能力及熟练度,通过现有技术满足这些需求。文章强调了广泛和特定知识的熟练度、精确信息获取以及代理的结构设计和协调。随着技术进步,该框架为AI代理的未来发展提供了基础。
Flink⼤状态作业调优实践指南:Flink SQL 作业篇
本文整理自俞航翔、陈婧敏、黄鹏程老师所撰写的大状态作业调优实践指南。由于内容丰富,本文中篇内容分享 Flink SQL 作业大状态导致反压的调优原理与方法。
Java一分钟之-JAXB:Java对象到XML绑定
【6月更文挑战第1天】Java Architecture for XML Binding (JAXB) 是Java平台标准,用于自动转换Java对象和XML。它通过注解实现声明式映射,简化XML处理。本文介绍了JAXB的基本使用、常见问题和最佳实践,包括对象到XML(Marshalling)和XML到对象(Unmarshalling)过程,并通过示例展示如何在Java类和XML之间进行转换。注意类型匹配、注解冲突和JAXB上下文创建等问题,以及如何优化性能和避免循环引用。
实时计算 Flink版产品使用合集之直接将 JSON 字符串解析为数组的内置函数如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
实时计算 Flink版产品使用合集之Managed Memory内存的含义是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
循环编码:时间序列中周期性特征的一种常用编码方式
循环编码是深度学习中处理周期性数据的一种技术,常用于时间序列预测。它将周期性特征(如小时、日、月)转换为网络可理解的形式,帮助模型识别周期性变化。传统的one-hot编码将时间特征转换为分类特征,而循环编码利用正弦和余弦转换,保持时间顺序信息。通过将时间戳转换为弧度并应用sin和cos,每个原始特征只映射到两个新特征,减少了特征数量。这种方法在神经网络中有效,但在树模型中可能需谨慎使用。
LSTM时间序列预测中的一个常见错误以及如何修正
在使用LSTM进行时间序列预测时,常见错误是混淆回归和预测问题。LSTM需将时间序列转化为回归问题,通常使用窗口或多步方法。然而,窗口方法中,模型在预测未来值时依赖已知的未来值,导致误差累积。为解决此问题,应采用迭代预测和替换输入值的方法,或者在多步骤方法中选择合适的样本数量和训练大小以保持时间结构。编码器/解码器模型能更好地处理时间数据。
Kylin使用心得:从入门到进阶的探索之旅
【5月更文挑战第2天】Apache Kylin是开源大数据分析平台,提供亚秒级OLAP查询。本文深入解析Kylin的工作原理,包括预计算模型Cube、构建过程和查询引擎。常见问题涉及Cube设计、查询性能和资源管理,解决方案涵盖合理设计、性能监控和测试验证。文中还分享了Cube创建的JSON示例,并探讨了Cube构建优化、查询优化、与其他组件集成、监控维护及生产环境问题解决。通过学习和实践,读者能有效提升数据洞察力和决策效率。
突破技术限制:使用 request-promise 库进行美团数据获取
本文展示了如何用`request-promise`爬取美团数据,重点是通过代理IP避免封禁。安装库后,配置含代理的请求选项,如`proxy`, `auth`和`headers`,并用`cheerio`解析HTML获取餐厅菜单。通过代理服务可以提高爬虫效率。
阿里云OpenSearch RAG混合检索Embedding模型荣获C-MTEB榜单第一
阿里云OpenSearch引擎通过Dense和Sparse混合检索技术,在中文Embedding模型C-MTEB榜单上拿到第一名,超越Baichuan和众多开源模型,尤其在Retrieval任务上大幅提升。
JavaScript 中的 if 判断:深入理解、实战应用与进阶技巧
【4月更文挑战第7天】探索 JavaScript 中的 if 判断语句,它是构建逻辑清晰程序的基础。了解其概念、语法、应用示例及编程技巧,包括条件控制、else if 结构、三目运算符。注意条件表达式简洁性,避免 falsy 值陷阱,利用逻辑运算符优化,并减少 if 嵌套。实践这些技巧将提升编程能力和代码质量。
Vision Mamba:将Mamba应用于计算机视觉任务的新模型
Mamba是LLM的一种新架构,与Transformers等传统模型相比,它能够更有效地处理长序列。就像VIT一样现在已经有人将他应用到了计算机视觉领域,让我们来看看最近的这篇论文“Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Models,”
基于PAI-EAS一键部署Stable Diffusion AIGC绘画
教程中,您将学习如何使用阿里云模型在线服务(PAI-EAS)的预置镜像,快速部署AIGC Stable Diffusion SDWebUI绘画的AI-Web应用,以及启动WebUI进行模型推理。
神经网络中的分位数回归和分位数损失
在使用机器学习构建预测模型时,我们不只是想知道“预测值(点预测)”,而是想知道“预测值落在某个范围内的可能性有多大(区间预测)”。例如当需要进行需求预测时,如果只储备最可能的需求预测量,那么缺货的概率非常的大。但是如果库存处于预测的第95个百分位数(需求有95%的可能性小于或等于该值),那么缺货数量会减少到大约20分之1。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。