速卖通获得AliExpress商品详情API接口文章
速卖通(AliExpress)是阿里巴巴旗下的全球跨境电商平台,提供便捷的在线购物渠道。为帮助开发者和商家高效管理商品信息,速卖通提供了商品详情API接口。本文介绍如何使用aliexpress.item_get API获取商品详情,包括获取API密钥、调用API接口及处理响应数据,帮助用户提升商品管理和营销效率。注意API调用限制和合法合规使用。
基于阿里云AI购物助手解决方案的深度评测
阿里云推出的AI购物助手解决方案,采用模块化架构,涵盖智能对话引擎、商品知识图谱和个性化推荐引擎。评测显示其在智能咨询问答、个性化推荐和多模态交互方面表现出色,准确率高且响应迅速。改进建议包括提升复杂问题理解、简化推荐过程及优化话术。总体评价认为该方案技术先进,应用效果好,能显著提升电商购物体验并降低运营成本。
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
如何轻松地 rip 3D Blu-ray:详细步骤指南
随着3D电影和家庭影院的普及,越来越多的人希望将3D Blu-ray电影转换为数字文件,以便在多种设备上播放。本文介绍了使用DVDFab、MakeMKV+HandBrake和Leawo Blu-ray Ripper等软件轻松rip 3D Blu-ray的方法,帮助用户享受高质量的3D观影体验。这些工具不仅提供了便捷性和高质量的输出,还能节省存储空间。
前端:事件循环/异步
前端开发中的事件循环和异步处理是核心机制,用于管理任务执行、性能优化及响应用户操作,确保网页流畅运行。事件循环负责调度任务,而异步则通过回调、Promise等实现非阻塞操作。
实现自动化数据抓取:使用Node.js操控鼠标点击与位置坐标
本文介绍了如何使用Node.js和Puppeteer实现自动化数据抓取,特别是针对新闻网站“澎湃新闻”。通过设置代理IP、User-Agent和Cookie,提高爬虫的效率和隐蔽性,避免被网站封锁。代码示例展示了如何模拟鼠标点击、键盘输入等操作,抓取并整理新闻数据,适用于需要规避IP限制和突破频率限制的场景。
SSL和TLS部署实践
【10月更文挑战第28天】在TLS中,服务器的加密身份和强大私钥是安全基础,2048位RSA密钥足以满足大多数需求。保护私钥需在可信环境生成、加密存储、使用HSM、及时撤销旧证书、每年更新证书。确保证书覆盖所有域名,选择可靠CA,使用SHA256签名算法,配置完整证书链,禁用不安全加密套件,启用前向保密,使用会话重用机制,启用OCSP Stapling,加密整个网站,删除混合内容,安全设置Cookie,配置HSTS和CSP。
xpath模块使用教程
XPath 是一种在 XML 文档中查找信息的语言,广泛用于 HTML 解析。本文介绍了 XPath 的安装与使用,包括 lxml 库的安装、解析流程、基本语法、路径表达式、谓语、通配符、多路径选择、逻辑运算、属性查询、索引查询、模糊查询、内容查询、属性值获取及节点内容转换等。通过实例详细说明了各种用法,帮助读者快速掌握 XPath 的应用技巧。
直播源怎么调用api接口
调用直播源的API接口涉及开通服务、添加域名、获取API密钥、调用API接口、生成推流和拉流地址、配置直播源、开始直播、监控管理及停止直播等步骤。不同云服务平台的具体操作略有差异,但整体流程简单易懂。

Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。

Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
Redux 状态管理入门
本文介绍了 Redux,一个广泛使用的 JavaScript 状态管理库,重点讲解了其核心概念(如 Store、Action、Reducer 等)、基本使用方法、常见问题及解决策略,并通过代码示例详细说明了如何在 React 应用中集成和使用 Redux。
亿级数据处理,Pandas的高效策略
在大数据时代,数据量的爆炸性增长对处理技术提出更高要求。本文介绍如何利用Python的Pandas库及其配套工具高效处理亿级数据集,包括:采用Dask进行并行计算,分块读取以减少内存占用,利用数据库进行复杂查询,使用内存映射优化Pandas性能,以及借助PySpark实现分布式数据处理。通过这些方法,亿级数据处理变得简单高效,助力我们更好地挖掘数据价值。
DB-GPT v0.6.0 版本更新,发布六大核心新特性!
DB-GPT v0.6.0 版本已发布,这是一个开源的AI原生数据应用开发框架,带来了多项新特性,包括AWEL协议升级至2.0,支持复杂编排;改进的数据应用创建与生命周期管理,支持多模式构建;GraphRAG增强图社区摘要与混合检索,图索引成本降低50%;丰富的Agent Memory类型;支持Text2NLU与Text2GQL微调;GPT-Vis前端可视化升级。这些更新助力企业快速构建智能数据应用,推动数字化转型。
Elasticsearch 的数据建模与索引设计
【9月更文第3天】Elasticsearch 是一个基于 Lucene 的搜索引擎,广泛应用于全文检索、数据分析等领域。为了确保 Elasticsearch 的高效运行,合理的数据建模和索引设计至关重要。本文将探讨如何为不同的应用场景设计高效的索引结构,并分享一些数据建模的最佳实践。
超越笔记本:JupyterLab 的功能扩展
【8月更文第29天】随着数据科学和机器学习的发展,交互式计算环境的需求也日益增长。Jupyter Notebook 作为这一领域的领头羊,已经得到了广泛的应用。然而,为了满足更加复杂的工作流需求,Jupyter 开发者们推出了 JupyterLab —— 一个下一代的交互式计算环境。本文将探讨 JupyterLab 相对于传统 Jupyter Notebook 的增强功能,并通过具体示例展示这些新特性如何提升工作效率。
Dask与Pandas:无缝迁移至分布式数据框架
【8月更文第29天】Pandas 是 Python 社区中最受欢迎的数据分析库之一,它提供了高效且易于使用的数据结构,如 DataFrame 和 Series,以及大量的数据分析功能。然而,随着数据集规模的增大,单机上的 Pandas 开始显现出性能瓶颈。这时,Dask 就成为了一个很好的解决方案,它能够利用多核 CPU 和多台机器进行分布式计算,从而有效地处理大规模数据集。
Elasticsearch 作为推荐系统后端的技术架构设计
【8月更文第28天】在现代互联网应用中,推荐系统已经成为提高用户体验和增加用户粘性的重要手段之一。Elasticsearch 作为一个高性能的搜索和分析引擎,不仅能够提供快速的全文检索能力,还可以通过其强大的数据处理和聚合功能来支持推荐系统的实现。本文将探讨如何利用 Elasticsearch 构建一个高效且可扩展的推荐系统后端架构,并提供一些具体的代码示例。
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
软件测试指南:从策略到实践
【8月更文第21天】软件测试是为了评估软件的质量并验证其是否符合预期的功能要求而进行的一系列活动。本文将详细介绍软件测试的不同阶段、测试类型、测试策略与计划的制定、以及如何有效地管理与跟踪发现的缺陷。
区块链与大数据:重构未来世界的密码
在科技飞速发展的时代,大数据被誉为“未来的石油”,区块链则被称为“信任的机器”。两者结合,将如何重塑世界?本文解析区块链与大数据的核心特性——区块链的去中心化、安全透明与大数据的海量、多样、实时价值;展示其在金融、供应链、医疗、交通等领域的应用场景;并展望未来跨界融合、信任重构、智能化发展以及隐私保护的趋势,预示着一个高效可信的新时代的到来。
全新启航!阿里云向量检索服务Milvus版正式上线!
由阿里云与 Zilliz 联合推出的业内领先的云原生向量检索引擎 - 阿里云向量检索服务 Milvus 版在杭州、上海、北京、深圳四大 region 正式可用并开放公测!
人工智能平台PAI操作报错合集之报错 "curl: (35) TCP connection reset by peer" 表示什么
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
云上数字资产管理:解锁数字经济新蓝海,护航企业价值增长
生态化建设:数字资产管理将不再局限于企业内部,而是逐步向生态化方向发展。企业将与产业链上下游伙伴、第三方服务机构等共同构建数字资产管理生态体系,实现资源的共享和价值的共创。 结语 云上数字资产管理作为数字经济时代的重要产物,正以其独特的优势和价值引领着企业资产管理的变革和发展。面对未来的机遇和挑战,企业需要不断加强技术创新和人才培养
天猫店铺商品数据接口集成指南与实战技巧
**天猫商品API概览** - **接口**: Tmall.item_search_shop, 获取店铺商品详情。 - **功能**: 开发者可获取商品标题、价格、销量等。 - **流程**: 注册天猫开放平台账户→获App Key/Secret→获取Access Token→构建URL调用API→解析JSON响应。 - **参数**: 包含店铺ID、页码、数量等。 - **返回**: JSON格式的商品列表。 - **应用**: 商品管理、电商应用开发、数据分析。此API助力商家高效管理、提升用户体验。
费德勒权变模型(Fiedler Contingency Model)详解与Python代码示例
费德勒权变模型(Fiedler Contingency Model)详解与Python代码示例
JavaScript 使用axios库发送 post请求给后端, 给定base64格式的字符串数据和一些其他参数, 使用表单方式提交, 并使用onUploadProgress显示进度
使用 Axios 发送包含 Base64 数据和其他参数的 POST 请求时,可以通过 `onUploadProgress` 监听上传进度。由于整个请求体被视为一个单元,所以进度可能不够精确,但可以模拟进度反馈。前端示例代码展示如何创建一个包含 Base64 图片数据和额外参数的 `FormData` 对象,并在上传时更新进度条。后端使用如 Express 和 Multer 可处理 Base64 数据。注意,实际进度可能不如文件上传精确,显示简单加载状态可能更合适。
「架构风格」SOA(面向服务)和微服务
**SOA与微服务对比摘要**: - **SOA**:企业级,服务粒度大,重用性强,常通过ESB通信,服务部署集中,技术栈统一。 - **微服务**:服务粒度小,单一职责,轻量级协议如REST,独立部署,技术多样性,去中心化治理。 - **区别**:服务大小、独立性、通信协议、部署方式和技术栈不同,微服务更强调敏捷和独立性。 - **示例**:Python Flask简单示例展示了服务创建,SOA服务间通过HTTP请求通信,微服务每个服务独立运行。 - **权衡**:涉及服务发现、负载均衡、容错和安全,常用技术如Docker、Kubernetes和API网关。
「AIGC」NodeJs使用openai流式请求与非流式请求
本文档是关于使用Node.js与OpenAI API交互的教程,涵盖了非流式和流式请求。非流式请求示例展示了如何一次性返回所有数据,适用于兼容性但可能需要较长时间。流式请求则演示了如何即时响应数据,提高交互体验,但可能不适用于所有系统。代码示例使用了axios库和http模块,展示了如何处理数据流。
Kafka高可用性指南:提高数据一致性和集群容错能力!
**Kafka高可用性概览** - 创建Topic时设置`--replication-factor 3`确保数据冗余和高可用。 - 分配角色:Leader处理读写,Follower同步数据,简化管理和客户端逻辑。 - ISR(In-Sync Replicas)保持与Leader同步的副本列表,确保数据一致性和可靠性。 - 设置`acks=all`保证消息被所有副本确认,防止数据丢失,增强一致性。 - 通过这些机制,Kafka实现了分布式环境中的数据可靠性、一致性及服务的高可用性。
C++一分钟之-C++20新特性:模块化编程
【6月更文挑战第27天】C++20引入模块化编程,缓解`#include`带来的编译时间长和头文件管理难题。模块由接口(`.cppm`)和实现(`.cpp`)组成,使用`import`导入。常见问题包括兼容性、设计不当、暴露私有细节和编译器支持。避免这些问题需分阶段迁移、合理设计、明确接口和关注编译器更新。示例展示了模块定义和使用,提升代码组织和维护性。随着编译器支持加强,模块化将成为C++标准的关键特性。
etcd:分布式键值存储系统技术
`etcd` 是一个用于共享配置和服务发现的高度可用键值存储系统,基于Raft算法保证数据一致性。它提供HTTP/GRPC API,常用于服务发现、配置共享和分布式锁。etcd集群包含多个节点,每个节点可为领导者或跟随者。在Kubernetes中,etcd存储集群状态,其稳定性和一致性至关重要。维护etcd涉及备份、状态监控、日志审计和安全措施。
DataWorks操作报错合集之遇到跨账号连通性问题,并收到错误消息“You are not authorized to do this action. You should be authorized by RAM.”,如何解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
Celery:高效异步任务队列的深度解析与应用实践
Celery 是一个流行的 Python 分布式任务队列,用于处理耗时的异步任务,提升Web应用性能。它包括消息中间件(如RabbitMQ、Redis)、任务生产者和消费者。Celery支持异步处理、分布式执行、任务调度、结果存储和错误处理。通过一个发送邮件验证码的实例,展示了如何安装配置、定义任务、触发任务以及查看执行结果。Celery的使用能有效优化应用响应速度和资源管理。
Python 3.x与Python 2.x:不兼容性的深度解析
Python 3.x与Python 2.x之间的不兼容性是一个复杂而重要的问题。尽管迁移可能会带来一些挑战和困难,但考虑到Python 2.x已经停止支持以及Python 3.x带来的诸多改进和优势,迁移是不可避免的。通过了解变化、使用兼容工具、逐步迁移、利用社区资源、编写测试、保持更新、考虑使用Python 3.x的特定功能、重新评估第三方库和框架、备份和版本控制以及测试和部署等策略,你可以成功地将你的代码从Python 2.x迁移到Python 3.x,并享受Python 3.x带来的新功能和改进.
harbor修改密码
在Harbor `v2.9.0`中,忘记密码可使用以下方法强制重置:通过`docker exec`进入harbor-db容器,使用SQL命令`update harbor_user set salt='',password='' where user_id = 1;`清空admin密码。然后重启Harbor,系统将要求初始化新密码。注意此操作涉及数据库交互,需谨慎执行。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。