PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。

一、DeepSeek-V3、R1 系列模型

DeepSeek-V3 是 DeepSeek 发布的 MoE(Mixture-of-Experts)大语言模型,总参数量为671B,每个 token 激活的参数量为37B。为了实现高效的推理和成本效益的训练,DeepSeek-V3 采用了 MLA(Multi-head Latent Attention)和 DeepSeekMoE 架构。此外,DeepSeek-V3 首次引入了一种无需辅助损失的负载均衡策略,并设定了多 token 预测的训练目标,以提升性能。DeepSeek-V3 在14.8万亿个多样且高质量的 token 上对模型进行了预训练,随后通过监督微调(SFT)和强化学习来充分发挥其潜力。

DeepSeek-R1 是 DeepSeek 发布的高性能 AI 推理模型,在后训练阶段大规模使用强化学习技术,显著提升了模型的推理能力,在数学、代码、自然语言推理等任务上,其性能与 OpenAI 的 o1 正式版相当。

DeepSeek-R1 具有660B的参数量,DeepSeek 开源 660B 模型的同时,通过模型蒸馏,微调了若干参数量较小的开源模型,其中包括:

模型

基础模型

DeepSeek-R1-Distill-Qwen-1.5B

Qwen2.5-Math-1.5B

DeepSeek-R1-Distill-Qwen-7B

Qwen2.5-Math-7B

DeepSeek-R1-Distill-Llama-8B

Llama-3.1-8B

DeepSeek-R1-Distill-Qwen-14B

Qwen2.5-14B

DeepSeek-R1-Distill-Qwen-32B

Qwen2.5-32B

DeepSeek-R1-Distill-Llama-70B

Llama-3.3-70B-Instruct

目前 PAI Model Gallery 已经支持 DeepSeek-V3、DeepSeek-R1 以及所有蒸馏小参数模型(DeepSeek-R1-Distill)的一键部署。


二、PAI Model Gallery 简介

Model Gallery 是阿里云人工智能平台 PAI 的产品组件,它集成了国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,如Qwen,DeepSeek等系列模型。通过 PAI 对这些模型的适配,用户可以零代码实现从训练到部署再到推理的全过程,简化了模型的开发流程,为开发者和企业用户带来了更快、更高效、更便捷的 AI 开发和应用体验。

PAI Model Gallery 访问地址:https://pai.console.aliyun.com/#/quick-start/models

image.png


三、PAI Model Gallery 一键部署 Deep Seek-V3、Deep Seek-R1

1. 进入 Model Gallery 页面

  1. 登录 PAI 控制台。
  2. 在顶部左上角根据实际情况选择地域。
  3. 在左侧导航栏选择工作空间列表,单击指定工作空间名称,进入对应工作空间内。
  4. 在左侧导航栏选择快速开始 > Model Gallery。

image.png


  1. 在 Model Gallery 页面的模型列表中,单击找到并点击需要部署的模型卡片,例如“DeepSeek-R1-Distill-Qwen-7B”模型,进入模型详情页面。

image.png

  1. 单击右上角部署:目前 DeepSeek-R1 支持采用 vLLM 加速部署;DeepSeek-V3 支持 vLLM 加速部署以及 Web 应用部署;DeepSeek-R1 蒸馏小模型支持采用 BladeLLM(阿里云 PAI 自研高性能推理框架)和 vLLM 加速部署。选择部署方式和部署资源后,即可一键部署服务,生成一个 PAI-EAS 服务。

image.png

  1. 使用推理服务。部署成功后,在服务页面可以点击“查看调用信息”获取调用的 Endpoint 和 Token,想了解服务调用方式可以点击预训练模型链接,返回模型介绍页查看调用方式说明。

image.png image.png

欢迎各位开发者持续关注和使用 PAI-Model Gallery,Model Gallery 会不断上线 SOTA 模型。如果您有任何模型需求,欢迎您联系我们。您可通过钉钉扫描下方二维码(或搜索钉钉群号79680024618),加入PAI-Model Gallery用户交流群。

image.png

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
509 2
阿里云PAI部署DeepSeek及调用
|
24天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
75 18
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
21天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
56 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
176 4
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
183 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
25天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
46 14
|
2月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
81 2
|
3月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
72 1
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络

相关产品

  • 人工智能平台 PAI