构建AI智能体:六十、特征工程行业实践录:金融、电商、医疗的智能化转型
本文通过金融风控、电商推荐和医疗诊断三个行业案例,系统阐述了特征工程的实践价值与技术方法。在金融领域,通过构建稳定性评分等特征,将贷款审批坏账率从8.2%显著降低;电商行业通过实时兴趣向量等特征,使推荐点击率提升3倍;医疗领域则利用病变严重度评分等特征,将筛查效率提升5倍。研究揭示了特征工程作为连接业务需求与技术实现的关键桥梁,其核心在于将原始数据转化为机器可理解的业务语言。
GPT-5.2来了,老金详细给你说说它为什么是王
OpenAI悄然上线GPT-5.2,因谷歌Gemini 3发布引发“红色警报”。新模型提升显著:幻觉减少38%,上下文达40万token,支持长文档精准处理;ARC-AGI-2与GDPval评测显示其真实推理与工作能力大幅增强,尤其适合金融、法律等专业场景。推出Instant、Thinking、Pro三版本,满足不同需求。虽无惊艳发布,但聚焦打工人实际应用,标志着AI向通用生产力工具迈进。
构建AI智能体:五十九、特征工程:数据预处理到特征创造的系统性方法
摘要:特征工程是将原始数据转化为机器学习模型可理解格式的关键步骤,类比于食材烹饪过程。其核心包括数据清洗(处理缺失值、异常值)、特征转换(标准化、分箱)、特征创造和特征选择。通过员工离职预测案例,展示了如何通过单变量分析(满意度、工作时长分布)、多变量分析(满意度与绩效关系)和业务分析(部门薪资组合)构建有效特征。特征工程能提升模型性能(如使用简单模型获得好效果)、增强可解释性(明确风险因素)并减少数据需求。
2025中国AI数字人技术类厂商评析与重点企业选择指南
数字人企业正乘科技浪潮崛起,资本与政策双轮驱动下迎来黄金发展期。像衍科技、阿里、百度等领军者依托技术革新与场景落地,推动数字人在金融、教育、医疗等领域规模化应用,实现从“虚拟形象”到“智能服务”的跨越,开启虚实融合的产业新纪元。