读Flink源码谈设计:有效管理内存之道

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 在最初接触到Flink时,是来自于业界里一些头部玩家的分享——大家会用其来处理海量数据。在这种场景下,`如何避免JVM GC带来StopTheWorld带来的副作用`这样的问题一直盘绕在我心头。直到用了Flink以后,阅读了相关的源码(以1.14.0为基准),终于有了一些答案。在这篇文章里也是会分享给大家。
版本 日期 备注
1.0 2021.12.20 文章首发
1.1 2021.12.22 错别字修正
1.2 2022.2.24 描述错误修正

0. 前言

在最初接触到Flink时,是来自于业界里一些头部玩家的分享——大家会用其来处理海量数据。在这种场景下,如何避免JVM GC带来StopTheWorld带来的副作用这样的问题一直盘绕在我心头。直到用了Flink以后,阅读了相关的源码(以1.14.0为基准),终于有了一些答案。在这篇文章里也是会分享给大家。

1. JVM内存管理的不足

除了上述提到的StopTheWorld,JVM的内存管理还会带来以下问题:

  • 内存浪费:一个Java对象在内存中存储时会分为三个部分:对象头、实例数据、对齐填充部分。首先,32位和64位的实现中,对象头分别要占用32bit和64bit。而为了提供整体的使用效率,JVM内存中的数据不是连续存储的,而是按照8byte的整数倍进行存储。哪怕你只有1byte,会自动padding7byte。
  • 缓存未命中:大家都知道CPU是有L1、2、3级缓存的,当CPU去读取内存中的数据时,会将内存中邻近的数据读到缓存中——这是程序局部性原理的一种实践手段。最近被CPU访问的数据,短期内CPU还要访问(时间);被CPU访问的数据附近的数据,CPU短期内还要访问(空间)。但我们前面提到,Java对象在堆上存储的时候并不是连续的,所以CPU去读取JVM上的对象时,缓存的邻近内存区域数据往往不是CPU下一步计算所需要的。这时CPU只能空转等待从内存里读取数据(两者的速度不是一个量级)。如果数据恰好被swap到硬盘里,那就是难上加难了。

2. Flink的演进方案

在v0.10之前,Flink使用了堆上内存的实现。简单来说就是通过byte数组的方式来分配连续内存,应用层自己维护类型信息来获取相应的数据。但这样仍然会有问题:

  • 在堆内内存过大的情况下,JVM启动时间会很长,而且Full GC会到达分钟级。
  • IO效率低:堆上内存写磁盘或网络至少需要1次内存复制。

因此在v0.10后,Flink引入了堆外内存管理功能。见Jira:Add an off-heap variant of the managed memory。除了解决堆内内存的问题,还会带来一些好处:

  • 堆外内存可以做成进程之间共享。这意味Flink可以以此来做故障恢复。

当然,凡事都是有双面性的,缺点是:

  • 分配短生命周期的对象,比起堆上内存,在堆外内存上分配开销更高。
  • 堆外内存出错时排错更为复杂。

这种实现在Spark中也可以找到,它叫做MemoryPool,同时支持堆内和堆外的内存方式,具体见MemoryMode.scala;Kafka也有类似的思路——通过Java NIO的ByteBuffer来保存它的消息。

3. 源码分析

总的来说,Flink在这一块的实现是比较清晰的——和操作系统一样有内存段,也有内存页这样的数据结构。

3.1 内存段

主要实现为MemorySegment。在v1.12前MemorySegment
仅仅为一个接口,它的实现有两个HybridMemorySegmentHeapMemorySegment。在之后的发展中,大家发现HeapMemorySegment基本都没有人用了,而是都用HybridMemorySegment了,为了优化性能——避免运行时每次都去查函数表确认调用的函数,去掉了HeapMemorySegment,并将HybridMemorySegment移到了MemorySegment中——这会见带来近2.7倍的调用速度优化。:Off-heap Memory in Apache Flink and the curious JIT compiler以及Jira:Don't explicitly use HeapMemorySegment in raw format serde

MemorySegment主要负责引用内存段,并其中数据进行读写——它对基本类型支持的很好,而复杂类型则需要外部来做序列化。具体的实现还是比较简单的,从field的声明中就可以大致看出实现了。唯一需要讲一下的是LITTLE_ENDIAN:不同的CPU架构会才不同的存储顺序——PowerPC会采用Big Endian方式,低地址存放最低有效字节;而x86会采用Little Endian方式存储数据,低地址存放最高有效字节。

4207742-c2d5777a8ebdd267.png

说实话,读到这个代码的时候笔者还是略震惊的,因为写Java这么多年几乎对底层的硬件是无感知的。没想到Java代码还要考虑兼容CPU架构的逻辑。

这个时候就会有同学问了,那这个MemorySegments是如何在Flink中运作的呢?我们可以看个测试用例:BinaryRowDataTest里的testPagesSer:
先是有MemorySegments,通过对应的BinaryRowWriter写入数据到RowData,再用BinaryRowDataSerializer写RowData到RandomAccessOutputView:

    @Test
    public void testPagesSer() throws IOException {
   
   
        MemorySegment[] memorySegments = new MemorySegment[5];
        ArrayList<MemorySegment> memorySegmentList = new ArrayList<>();
        for (int i = 0; i < 5; i++) {
   
   
            memorySegments[i] = MemorySegmentFactory.wrap(new byte[64]);
            memorySegmentList.add(memorySegments[i]);
        }

        {
   
   
            // multi memorySegments
            String str = "啦啦啦啦啦我是快乐的粉刷匠,啦啦啦啦啦我是快乐的粉刷匠," + "啦啦啦啦啦我是快乐的粉刷匠。";
            BinaryRowData row = new BinaryRowData(1);
            BinaryRowWriter writer = new BinaryRowWriter(row);
            writer.writeString(0, fromString(str));
            writer.complete();

            RandomAccessOutputView out = new RandomAccessOutputView(memorySegments, 64);
            BinaryRowDataSerializer serializer = new BinaryRowDataSerializer(1);
            serializer.serializeToPages(row, out);

            BinaryRowData mapRow = serializer.createInstance();
            mapRow =
                    serializer.mapFromPages(
                            mapRow, new RandomAccessInputView(memorySegmentList, 64));
            writer.reset();
            writer.writeString(0, mapRow.getString(0));
            writer.complete();
            assertEquals(str, row.getString(0).toString());

            BinaryRowData deserRow =
                    serializer.deserializeFromPages(
                            new RandomAccessInputView(memorySegmentList, 64));
            writer.reset();
            writer.writeString(0, deserRow.getString(0));
            writer.complete();
            assertEquals(str, row.getString(0).toString());
        }
     // ignore some code
    }

3.2 内存页

一个MemorySegment默认对应了32KB大小的内存块。在流处理中,很容易出现超过32KB的数据,这时就需要跨MemorySegment。那么对于编写相应逻辑的人就需要持有多个MemorySegment,因此Flink提供了内存页的实现,它会持有多个MemorySegment实例,方便框架的开发人员来快速的编写Memory相关的代码,而无需关注一个个的MemorySegment。

其抽象为DataInputView和DataOutputView,分别对了数据读取和数据写入。

接下来,还是关联实际的代码看一下。我们以我们最常见的KafkaProducer使用为例:

|-- KafkaProducer#invoke //在这里指定了serializedValue
  \-- KeyedSerializationSchema#serializeValue //序列化record 的value

我们挑一个实现看看,以TypeInformationKeyValueSerializationSchema为例:

|-- TypeInformationKeyValueSerializationSchema#deserialize //KeyedSerializationSchema的实现类
|-- DataInputDeserializer#setBuffer // 这是DataInputView的实现,用内部的byte数组存储数据。这里很奇怪的是并没有使用MemorySegement。
|-- TypeSerializer#deserialize  // 它的实现会针对不同的类型,从DataInputView里读出数据返回
```

其实这里的例子不太恰当。因为KeyedSerializationSchema已经被标记为了废弃。社区更建议我们使用KafkaSerializationSchema。第一个原因是因为KeyedSerializationSchema的抽象并不合适Kafka,当Kafka在Record新加字段时,是很难抽象当这个接口里的——这个接口仅仅关注了key、value以及topic。

KafkaSerializationSchema展开的话,我们可以看典型的实现——KafkaSerializationSchemaWrapper,我们关心的地方很容找到:

    @Override
    public ProducerRecord<byte[], byte[]> serialize(T element, @Nullable Long timestamp) {
   
   
        byte[] serialized = serializationSchema.serialize(element);
        final Integer partition;
        if (partitioner != null) {
   
   
            partition = partitioner.partition(element, null, serialized, topic, partitions);
        } else {
   
   
            partition = null;
        }

        final Long timestampToWrite;
        if (writeTimestamp) {
   
   
            timestampToWrite = timestamp;
        } else {
   
   
            timestampToWrite = null;
        }

        return new ProducerRecord<>(topic, partition, timestampToWrite, null, serialized);
    }

这个serializationSchema的声明是一个名为SerializationSchema的接口。可以看到它有大量的实现,其中很多对应了DataStream还有SQL API中的format。我们以TypeInformationSerializationSchema为例继续跟踪:

@Public
public class TypeInformationSerializationSchema<T>
        implements DeserializationSchema<T>, SerializationSchema<T> {
   
   

    //ignore some filed

    /** The serializer for the actual de-/serialization. */
    private final TypeSerializer<T> serializer;
....

又看到我们熟悉的接口TypeSerializer了。就像上面说的,它的实现会针对不同的类型,从DataInputView、DataOutputView进行互动,提供序列化和反序列化的能力。在它的方法签名中也是可以看到的:

    /**
     * Serializes the given record to the given target output view.
     *
     * @param record The record to serialize.
     * @param target The output view to write the serialized data to.
     * @throws IOException Thrown, if the serialization encountered an I/O related error. Typically
     *     raised by the output view, which may have an underlying I/O channel to which it
     *     delegates.
     */
    public abstract void serialize(T record, DataOutputView target) throws IOException;

    /**
     * De-serializes a record from the given source input view.
     *
     * @param source The input view from which to read the data.
     * @return The deserialized element.
     * @throws IOException Thrown, if the de-serialization encountered an I/O related error.
     *     Typically raised by the input view, which may have an underlying I/O channel from which
     *     it reads.
     */
    public abstract T deserialize(DataInputView source) throws IOException;

    /**
     * De-serializes a record from the given source input view into the given reuse record instance
     * if mutable.
     *
     * @param reuse The record instance into which to de-serialize the data.
     * @param source The input view from which to read the data.
     * @return The deserialized element.
     * @throws IOException Thrown, if the de-serialization encountered an I/O related error.
     *     Typically raised by the input view, which may have an underlying I/O channel from which
     *     it reads.
     */
    public abstract T deserialize(T reuse, DataInputView source) throws IOException;

    /**
     * Copies exactly one record from the source input view to the target output view. Whether this
     * operation works on binary data or partially de-serializes the record to determine its length
     * (such as for records of variable length) is up to the implementer. Binary copies are
     * typically faster. A copy of a record containing two integer numbers (8 bytes total) is most
     * efficiently implemented as {@code target.write(source, 8);}.
     *
     * @param source The input view from which to read the record.
     * @param target The target output view to which to write the record.
     * @throws IOException Thrown if any of the two views raises an exception.
     */
    public abstract void copy(DataInputView source, DataOutputView target) throws IOException;

那么TypeSerializer#deserialize到底是怎么被调用到的呢?这些细节并不是这篇文章需要关心的。在这里我们展示一下调用链,有兴趣的读者可以沿着这个调用链看一下具体的代码:

|-- TypeSerializer#deserialize
|-- StreamElementSerializer#deserialize
|-- TypeInformationKeyValueSerializationSchema#deserialize
|-- KafkaDeserializationSchema#deserialize
|-- KafkaFetcher#partitionConsumerRecordsHandler //到这里已经很清楚了,这里是由FlinkKafkaConsumer new出来的对象

3.3 缓冲池

还有一个比较有意思的类是LocalBufferPool,封装了MemorySegment。一般用于网络缓冲器(NetworkBuffer),NetworkBuffer是网络交换数据的包装,当结果分区(ResultParition)开始写出数据的时候,需要向LocalBufferPool申请Buffer资源。

写入逻辑:

|-- Task#constructor //构造任务
|-- NettyShuffleEnvironment#createResultPartitionWriters // 创建用于写入结果的结果分区
|-- ResultPartitionFactory#create
  \-- ResultPartitionFactory#createBufferPoolFactory //在这里创建了一个简单的BufferPoolFactory
|-- PipelinedResultPartition#constructor
|-- BufferWritingResultPartition#constructor
|-- SortMergeResultPartition#constructor or BufferWritingResultPartition#constructor
|-- ResultPartition#constructor
  \-- ResultPartition#steup // 注册缓冲池到这个结果分区中

另外,NetworkBuffer实现了Netty的AbstractReferenceCountedByteBuf。这意味着这里采用了经典的引用计数算法,当Buffer不再被需要时,会被回收。

4. 其他

4.1 相关Flink Jira

以下是我在写本文时参考过的Jira列表:

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
5月前
|
关系型数据库 MySQL 数据库
实时计算 Flink版操作报错合集之网络缓冲池(NetworkBufferPool)中可用内存不足,该如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
4月前
|
存储 缓存 编译器
Linux源码阅读笔记06-RCU机制和内存优化屏障
Linux源码阅读笔记06-RCU机制和内存优化屏障
|
4月前
|
消息中间件 Kubernetes 监控
实时计算 Flink版操作报错合集之在编译源码时遇到报错:无法访问,该如何处理
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
4月前
|
NoSQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之全量同步的内存释放该怎么实现
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
SQL 存储 关系型数据库
实时计算 Flink版产品使用问题之同步MySQL多张表的过程中,内存释放依赖于什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
存储 缓存 监控
Flink内存管理机制及其参数调优
Flink内存管理机制及其参数调优
|
5月前
|
缓存 关系型数据库 MySQL
实时计算 Flink版产品使用问题之缓存内存占用较大一般是什么导致的
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
Web App开发 监控 API
Flink技术源码解析(一):Flink概述与源码研读准备
一、前言 Apache Flink作为一款高吞吐量、低延迟的针对流数据和批数据的分布式实时处理引擎,是当前实时处理领域的一颗炙手可热的新星。关于Flink与其它主流实时大数据处理引擎Storm、Spark Streaming的不同与优势,可参考https://blog.csdn.net/cm_chenmin/article/details/53072498。 出于技术人对技术本能的好奇与冲动,
32321 0
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
28天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
936 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

相关产品

  • 实时计算 Flink版