hive数仓 ods层增量数据导入
根据业务需求,当表数据量超过10万条时采用增量数据导入,否则全量导入。增量导入基于`create_date`和`modify_date`字段进行,并确保时间字段已建立索引以提升查询效率。避免在索引字段上执行函数操作。创建增量表和全量表,并按日期进行分区。首次导入全量数据,后续每日新增或变更数据保存在增量表中,通过全量表与增量表的合并保持数据一致性。
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
饿了么的实时数仓经历了多个阶段的演进。初期通过实时ETL、报表应用、联动及监控构建基础架构,随后形成了涵盖数据采集、加工和服务的整体数据架构。1.0版本通过日志和Binlog采集数据,但在研发效率和数据一致性方面存在问题。2.0版本通过Dataphin构建流批一体化系统,提升了数据一致性和研发效率,但仍面临新业务适应性等问题。最终,饿了么选择Paimon和StarRocks作为实时湖仓方案,显著降低了存储成本并提高了系统稳定性。未来,将进一步优化带宽瓶颈、小文件问题及权限控制,实现更多场景的应用。
基于 Hologres 搭建轻量 OLAP 分析平台评测报告
【9月更文第6天】开作为互联网手游公司的产品经理和项目经理,数据分析对于我们的业务至关重要。我们一直在寻找高效、可靠的数据分析解决方案,以更好地了解玩家行为、优化游戏体验和提升运营效率。近期,我们体验并部署了《基于 Hologres 搭建轻量 OLAP 分析平台》解决方案,以下是我们对该方案的评测报告。
大数据&AI产品月刊【2024年8月】
大数据& AI 产品技术月刊【2024年8月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
阿里云Hologres:一站式轻量级OLAP分析平台的全面评测
在数据驱动决策的今天,企业对高效、灵活的数据分析平台的需求日益增长。阿里云的Hologres,作为一站式实时数仓引擎,提供了强大的OLAP(在线分析处理)分析能力。本文将对Hologres进行深入评测,探讨其在多源集成、性能、易用性以及成本效益方面的表现。
阿里云 Hologres OLAP 解决方案评测
随着大数据时代的到来,企业面临着海量数据的挑战,如何高效地进行数据分析和决策变得尤为重要。阿里云推出的 Hologres OLAP(在线分析处理)解决方案,旨在为用户提供快速、高效的数据分析能力。本文将深入探讨 Hologres OLAP 的特点、优势以及应用场景,并针对方案的技术细节、部署指导、代码示例和数据分析需求进行评测。