【论文解读】MV3D-Net 用于自动驾驶的多视图3D目标检测网络
MV3D-Net融合了视觉图像和激光雷达点云信息;它只用了点云的俯视图和前视图,这样既能减少计算量,又保留了主要的特征信息。随后生成3D候选区域,把特征和候选区域融合后输出最终的目标检测框。
论文地址:Multi-View 3D Object Detection Network for Autonomous Driving
开源代码:GitHub - bostondiditeam/MV3D: Multi-View 3D Object Detection Network for Autonomous Driving
TuGraph Analytics图建模研发:为图计算业务提速增效
GeaFlow Console平台提供了图数据研发能力,包括了对点、边、图、表、函数、任务的管理功能, 为了让用户更好的管理元数据信息,同时也便于用户对图计算进一步地了解。通过对这些研发资源的管理,用户可以方便地、白屏化地创建、修改、删除这些元数据,也可以很方便地查看当前租户下所拥有的数据资产概览及详情,从而更多关注于业务逻辑的实现。