基于二维小波变换的散斑相位奇异构造算法matlab仿真

简介: 基于二维小波变换的散斑相位奇异构造算法matlab仿真

1.算法运行效果图预览

df105f4f4de1b748c558586d9931967e_82780907_202312262214130007523438_Expires=1703600653&Signature=80KfdgBGIjTtCrDDCSnz2btcTS8%3D&domain=8.jpeg

   图(1)表示散斑原图像,(2)表示对(1)图像进行x轴方向的极化分析的小波相位图,呈周期的水平条纹,(3)表示对(1)图像进行y轴方向的极化分析的小波相位图,呈周期的竖直条纹。

c58055c5c0e0339aaa76a04cbeb0ad7b_82780907_202312262214230021716349_Expires=1703600663&Signature=vPrbnmsdL4%2BNgaiKjpbjJocFuHA%3D&domain=8.jpeg

    表示相位奇异点图的构造过程,其中(1)表示从上图(2)中提取的实部零值线,(2)表示从上图(3)中提取的虚部零值线,(3)表示(1)和(2)两幅图重合后的图像。

2.算法运行软件版本
matlab2022a

3.算法理论概述
面内微位移测量是力学测量中的重要分支,可应用到工程在线检测、精密设备加工、细胞生物测定等各种不同的领域,面内微位移测量技术水平的高低直接影响着各个领域技术水平的发展。散斑是光学中的一种普遍现象,采用散斑图像进行面内微位移测量具有设备简单、非接触等优点,在面内微位移测量中发挥着重要的作用。散斑图像是由于光的干涉和衍射效应在物体表面形成的随机颗粒状纹理。这些散斑图像通常包含大量的噪声和畸变,对于许多图像处理任务来说是一个挑战。基于二维小波变换的散斑相位奇异构造算法利用小波变换的优良特性,对散斑图像进行多尺度分解,从而提取出图像中的相位奇异信息。

   二维小波变换是一种有效的图像分析工具,它能够将图像分解为不同的频带,从而在不同的尺度上分析图像的特征。通过小波变换,可以将散斑图像分解为一系列具有不同空间尺度和方向性的子带,这些子带反映了图像在不同尺度上的特征。

   采用二维方向小波变换构造新型的、网格均匀的网状相位奇异点图,提出了初步位移和精确位移两步测量的新方法,由初步位移和匹配最邻近奇异点对间的位移计算待测物体的精确位移。基于二维小波变换的散斑相位奇异构造算法的实现过程如下:

对输入的散斑图像进行二维小波变换,得到不同尺度和方向上的小波系数。
分析小波系数,提取出相位奇异信息。这可以通过计算相位梯度、相位跃变等方法来实现。
根据提取出的相位奇异信息,构造出散斑图像的相位奇异图。这个图反映了图像中重要特征的位置和形状。
对构造出的相位奇异图进行后处理,例如滤波、增强等,以提高图像的质量和可视化效果。

4.部分核心程序
```movex = 14;
movey = 4;
es = 6;
k0 = 4;
a = 20;

I0 = imresize(double(rgb2gray(imread('1.jpg'))),[130,130]);
[R,C] = size(I0);

if movex == 0;
I0 = I0;
else
I0 = [I0(:,movex+1:end),I0(:,1:movex)];
I0 = [I0(movey+1:end,:);I0(1:movey,:)];
end

figure;
subplot(131);
imshow(I0,[]);
title('散斑原图像');
axis square;

%x轴方向的极化分析的小波变换相位图计算
Fx = func_fai_base(I0,movex,movey,es,k0,a,'x');
subplot(132);
imshow(Fx,[]);
title('x轴极化分析的小波变换相位图');
axis square;
%y轴方向的极化分析的小波变换相位图计算
Fy = func_fai_base(I0,movex,movey,es,k0,a,'y');
subplot(133);
imshow(Fy,[]);
title('y轴极化分析的小波变换相位图');
axis square;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F2x = func_findzeros(Fx,'x');
figure;
subplot(131);
imshow(F2x,[]);
title('实部零值线');
F2y = func_findzeros(Fy,'y');
subplot(132);
imshow(F2y,[]);
title('虚部零值线');
%重叠
Fxy = func_chongdie(F2x,F2y);
subplot(133);
imshow(Fxy,[]);
title('重合,交点即相位奇异点');

```

相关文章
|
2天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
1天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
2天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
3天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
17天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
3天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
3天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
18 3
|
14天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
下一篇
无影云桌面