Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题

简介: 《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566

在数学领域,许多猜想和问题已经困扰了数学家们数十年甚至更长时间。然而,随着人工智能(AI)技术的发展,越来越多的研究开始尝试利用AI来解决这些难题。最近,一篇名为《PatternBoost: Constructions in Mathematics with a Little Help from AI》的论文在arXiv上发布,介绍了一种名为PatternBoost的算法,该算法利用AI技术在数学研究中取得了显著的成果。

PatternBoost算法的核心思想是结合传统搜索算法和Transformer神经网络,通过交替进行局部搜索和全局优化来找到有趣的数学构造。具体来说,算法分为两个阶段:

  1. 局部搜索阶段:使用经典的搜索算法(如贪心算法或回溯算法)来生成许多可能的数学构造。这些构造可能并不完美,但它们为后续的全局优化提供了基础。

  2. 全局优化阶段:使用Transformer神经网络对局部搜索阶段生成的构造进行训练。Transformer网络能够学习到构造中的模式和规律,并生成新的构造作为种子,供局部搜索阶段使用。通过不断重复这两个阶段,算法能够逐步优化构造,最终找到更好的解决方案。

在论文中,作者将PatternBoost算法应用于几个极端组合学问题,并取得了令人印象深刻的结果。其中最引人注目的是,算法成功构造了一个反例,推翻了一个已经存在了30年的猜想。

这个猜想涉及图论中的Ramsey数,它描述了在完全图中寻找特定子图所需的最小顶点数。尽管数学家们已经在这个领域取得了许多进展,但对于某些特定的Ramsey数,仍然没有找到确切的值。而PatternBoost算法通过生成新的构造,成功找到了一个比之前已知构造更小的反例,从而推翻了这个猜想。

PatternBoost算法在数学研究中的应用展示了AI技术的巨大潜力。与传统的数学研究方法相比,PatternBoost算法具有以下优势:

  1. 高效性:算法能够快速生成大量的构造,并从中选择最优的解决方案。这大大加快了研究的进程,使得数学家们能够更快地找到问题的答案。

  2. 创新性:由于算法能够学习到构造中的模式和规律,它能够生成新的、之前未被考虑过的构造。这为数学研究带来了新的思路和方法。

然而,PatternBoost算法也面临一些挑战:

  1. 可解释性:由于算法涉及到神经网络的训练和优化,其内部工作原理可能难以解释。这给数学家们理解和验证算法的结果带来了困难。

  2. 通用性:算法的性能可能因问题而异。对于某些问题,算法可能能够取得很好的结果,而对于其他问题,可能效果并不理想。这需要进一步的研究来改进算法的通用性。

论文地址:https://arxiv.org/abs/2411.00566

目录
相关文章
|
16天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171338 13
|
18天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150296 32
|
26天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201962 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
4天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
8天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1254 10
|
10天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
9天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1358 24
|
9天前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
682 28
1月更文特别场——寻找用云高手,分享云&AI实践
|
14天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理