Python

首页 标签 Python
# Python #
关注
112732内容
|
5天前
|
Kotlin教程笔记(5) - 常量与变量
Kotlin教程笔记(5) - 常量与变量
|
5天前
|
SciPy 教程 之 SciPy 稀疏矩阵 3
SciPy 稀疏矩阵教程介绍了稀疏矩阵的概念及其在科学计算中的应用。SciPy 的 `scipy.sparse` 模块提供了处理稀疏矩阵的功能,主要包括 CSC(压缩稀疏列)和 CSR(压缩稀疏行)两种格式。通过示例展示了如何使用 CSR 矩阵的方法,如查看非零元素和删除零元素。
|
5天前
|
SciPy 教程 之 SciPy 稀疏矩阵 4
SciPy 教程之 SciPy 稀疏矩阵 4:介绍稀疏矩阵的概念、类型及其在科学计算中的应用。SciPy 的 `scipy.sparse` 模块提供了处理稀疏矩阵的工具,重点讲解了 CSC 和 CSR 两种格式,并通过示例演示了如何创建和操作 CSR 矩阵。
Python 虚拟环境全解:轻松管理项目依赖
本文详细介绍了 Python 虚拟环境的概念、创建和使用方法,包括 `virtualenv` 和 `venv` 的使用,以及最佳实践和注意事项。通过虚拟环境,你可以轻松管理不同项目的依赖关系,避免版本冲突,提升开发效率。
|
5天前
|
Sentieon软件快速入门指南
Sentieon为纯CPU计算加速软件,完全适配主流CPU计算架构:Intel、AMD、海光等X86架构CPU,华为鲲鹏、阿里倚天等ARM架构CPU。可灵活部署在实验室单机工作站、HPC集群、超算中心和云计算中心,保持同一套流程下不同规模数据计算结果的一致性。Sentieon软件团队拥有丰富的软件开发及算法优化工程经验,致力于解决生物数据分析中的速度与准确度瓶颈,为来自于分子诊断、药物研发、临床医疗、人群队列、动植物等多个领域的合作伙伴提供高效精准的软件解决方案,共同推动基因技术的发展。
|
5天前
|
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
|
5天前
|
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
|
5天前
|
GraphRAG入门指南:构建你的第一个知识图谱驱动应用
【10月更文挑战第28天】随着人工智能和机器学习技术的飞速发展,知识图谱(Knowledge Graph)逐渐成为连接数据和智能应用的重要桥梁。GraphRAG(Graph-based Retrieval-Augmented Generation)是一种结合了知识图谱和自然语言处理的技术,能够在生成文本时利用知识图谱中的结构化信息,从而提高生成质量和相关性。作为一名数据科学家和技术爱好者,我有幸深入研究并实践了GraphRAG技术,现将我的经验和心得整理成这份入门指南,希望能帮助初学者快速上手并构建自己的知识图谱驱动应用。
免费试用