高级检索增强生成系统:LongRAG、Self-RAG 和 GraphRAG 的实现与选择
检索增强生成(RAG)已超越简单向量匹配,迈向LongRAG、Self-RAG与GraphRAG等高级形态。LongRAG通过大块重叠分片保留长上下文,提升连贯性;Self-RAG引入反思机制,动态判断检索必要性与内容相关性,增强可信度;GraphRAG构建知识图谱,支持多跳推理与复杂关系挖掘。三者分别应对上下文断裂、检索盲目性与关系表达缺失难题,代表2025年RAG工程化核心进展,可依场景组合使用以平衡准确性、成本与复杂度。
数据清洗6大核心方法,一文讲透!
数据清洗是数据分析的基石,能确保结果准确、提升效率、统一口径。面对缺失值、异常值、格式不一等痛点,需结合业务理解,通过系统化步骤与工具(如FineDataLink)高效处理,避免“垃圾进垃圾出”。
基于python大数据的小说数据可视化及预测系统
本研究基于Python构建小说数据可视化与预测系统,整合多平台海量数据,利用爬虫、数据分析及机器学习技术,实现热度趋势预测与用户偏好挖掘。系统结合Django、Vue等框架,提供动态交互式可视化界面,助力平台精准运营、作者创作优化与读者个性化阅读体验,推动网络文学数据智能化发展。
CrewAI 上手攻略:多 Agent 自动化处理复杂任务,让 AI 像员工一样分工协作
CrewAI 是一个基于 Python 的自主 AI 智能体编排框架,可构建“虚拟团队”协同完成复杂任务。通过定义角色明确的 Agents、任务流 Tasks、协作流程 Processes 及可用工具 Tools,实现研究、写作、开发等多环节自动化。适用于长链条工作流,如研报生成、竞品分析、软件开发等,支持异步执行、人工介入与结构化输出,集成主流大模型与工具生态,是处理复杂知识型任务的高效选择。(238 字)