机器人SLAM建图与自主导航
前言
这篇文章我开始和大家一起探讨机器人SLAM建图与自主导航 ,在前面的内容中,我们介绍了差速轮式机器人的概念及应用,谈到了使用Gazebo平台搭建仿真环境的教程,主要是利用gmapping slam算法,生成一张二维的仿真环境地图 。我们也会在这篇文章中继续介绍并使用这片二维的仿真环境地图,用于我们的演示。
教程
SLAM算法的引入
(1)SLAM:Simultaneous Localization and Mapping,中文是即时定位与地图构建,所谓的SLAM算法准确说是能实现SLAM功能的算法,而不是某一个具体算法。
(2)现在各种机器人研发和商用化非常火 ,所有的自主机器
ROS机器视觉入门:从基础到人脸识别与目标检测
前言
从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。
颜色编码格式,图像格式和视频压缩格式
(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。
rgb8图像格式:常用于显示系统,如电视和计算机屏幕。
RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色
使用URDF和Xacro构建差速轮式机器人模型
前言
本篇文章介绍的是ROS高效进阶内容,使用URDF 语言(xml格式)做一个差速轮式机器人模型,并使用URDF的增强版xacro,对机器人模型文件进行二次优化。
差速轮式机器人:两轮差速底盘由两个动力轮位于底盘左右两侧,两轮独立控制速度,通过给定不同速度实现底盘转向控制。一般会配有一到两个辅助支撑的万向轮。
此次建模,不引入算法,只是把机器人模型的样子做出来,所以只使用 rivz 进行可视化显示。
机器人的定义和构成
机器人定义:机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高级灵活性的自动化机器
ROS2:从初识到深入,探索机器人操作系统的进化之路
前言
最近开始接触到基于DDS的这个系统,是在稚晖君的机器人项目中了解和认识到。于是便开始自己买书学习起来,感觉挺有意思的,但是只是单纯的看书籍,总会显得枯燥无味,于是自己又开始在网上找了一些视频教程结合书籍一起来看,便让我对ROS系统有了更深的认识和理解。
ROS的发展历程
ROS诞生于2007年的斯坦福大学,这是早期PR2机器人的原型,这个项目很快被一家商业公司Willow Garage看中,类似现在的风险投资一样,他们投了一大笔钱给这群年轻人,PR2机器人在资本的助推下成功诞生。
2010年,随着PR2机器人的发布,其中的软件正式确定了名称,就叫做机器人操作系统,Robot Op
从基础到人脸识别与目标检测
前言
从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。
颜色编码格式,图像格式和视频压缩格式
(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。
rgb8图像格式:常用于显示系统,如电视和计算机屏幕。
RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色
由通义千问驱动的人形机器人具身智能Multi-Agent系统
申昊科技人形机器人小昊,集成通义千问多模态大模型的具身智能系统,旨在讲解销售、迎宾表演等场景。机器人通过语音、动作等方式与用户互动,利用云端大语言模型处理自然语言,结合视觉、听觉等多模态感知技术,实现流畅的人机对话、目标追踪、展厅讲解等功能。
一文详解阿里云可观测体系下标签最佳实践
在当今数字化转型加速的时代,企业 IT 系统的复杂度与日俱增,如何高效地管理和监控这些系统成为了一项挑战。阿里云作为全球领先的云计算服务商,提供了一整套全面的可观测性解决方案,覆盖从业务、端侧(小程序、APP、H5 等)、应用、中间件、容器/ECS 等全栈的监控体系,旨在帮助企业构建强大而灵活的可观测性体系。其中,标签(Tag)作为一种核心组织和管理手段,在阿里云可观测体系中扮演着至关重要的角色。本文将深入探讨阿里云可观测系列产品中标签的应用,以及如何运用标签在阿里云可观测产品体系下进行体系化建设并给出相关最佳实践。