机器人SLAM建图与自主导航

本文涉及的产品
资源编排,不限时长
简介: 前言这篇文章我开始和大家一起探讨机器人SLAM建图与自主导航 ,在前面的内容中,我们介绍了差速轮式机器人的概念及应用,谈到了使用Gazebo平台搭建仿真环境的教程,主要是利用gmapping slam算法,生成一张二维的仿真环境地图 。我们也会在这篇文章中继续介绍并使用这片二维的仿真环境地图,用于我们的演示。教程SLAM算法的引入(1)SLAM:Simultaneous Localization and Mapping,中文是即时定位与地图构建,所谓的SLAM算法准确说是能实现SLAM功能的算法,而不是某一个具体算法。(2)现在各种机器人研发和商用化非常火 ,所有的自主机器

前言

这篇文章我开始和大家一起探讨机器人SLAM建图与自主导航 ,在前面的内容中,我们介绍了差速轮式机器人的概念及应用,谈到了使用Gazebo平台搭建仿真环境的教程,主要是利用gmapping slam算法,生成一张二维的仿真环境地图 。我们也会在这篇文章中继续介绍并使用这片二维的仿真环境地图,用于我们的演示。

教程

SLAM算法的引入

(1)SLAM:Simultaneous Localization and Mapping,中文是即时定位与地图构建,所谓的SLAM算法准确说是能实现SLAM功能的算法,而不是某一个具体算法。

(2)现在各种机器人研发和商用化非常火 ,所有的自主机器人都绕不开一个问题,即在陌生环境中,需要知道周边是啥样(建图),需要知道我在哪(定位),于是有了SLAM 课题的研究。SLAM在室内机器人,自动驾驶汽车建图,VR/AR穿戴等领域都有广泛的应用。

(3)SLAM算法根据依赖的传感器不同,可以分为激光SLAM和视觉SLAM,前者是激光雷达,后者是能提供深度信息的摄像头,如双目摄像头,红外摄像头等。除此之外,SLAM算法通常还依赖里程计提供距离信息,否则地图很难无缝的拼接起来,很容易跑飞。一个经典的SLAM 流程框架如下,其中回环检测时为了判断机器人有没有来过之前的位置。

整体视觉SLAM的流程图

gmapping算法的基本原理

(1)现在ROS里有一系列SLAM算法包,如:gmapping ,hector(不需要里程计,比较特别),谷歌开源的cartographer(效率高),rtabmap(前面是二维的,这是三维建图)等。

(2)gmapping是基于激光雷达的,需要里程计信息,创建二维格栅地图。其中IMU信息可以没有 。

(3)ros中激光雷达数据消息是 sensor_msgs/LaserScan ,内容如下:

(4)ros中里程计数据消息是 nav_msgs/Odometry 。

(5)gmapping 发布的地图meta数据:

(6)gmapping 发布的地图栅格数据

mbot_navigation

(1)ubuntu20.04 + ros noetic下,安装gmapping和保存地图文件的map_server

sudo apt-get install ros-noetic-gmapping
sudo apt-get install ros-noetic-map-server
// 补充:这是安装hector
sudo apt-get install ros-noetic-hector-slam

(2)创建 mbot_navigation 和相关文件

cd ~/catkin_ws/src
catkin_create_pkg mbot_navigation geometry_msgs move_base_msgs actionlib roscpp rospy
cd mbot_navigation 
mkdir launch maps rviz
touch launch/gmapping.launch

(3)调用gmapping算法,只需要写launch文件就行了,不用编码。gmapping.launch

<launch>
  // mbot_gazebo 会通过发/scan topic,传出lidar数据
    <arg name="scan_topic" default="scan" />
    // gammping一大堆参数,这里都是从他的demo里扣出来的,不用改。
    // 如果想用的好,可以尝试修改,甚至改一些代码,这就是算法(调参)工程师!
    <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen" clear_params="true">
      // mbot_gazebo 会通过发/odom topic,传出里程计数据
        <param name="odom_frame" value="odom"/>
        <param name="map_update_interval" value="5.0"/>
        <!-- Set maxUrange < actual maximum range of the Laser -->
        <param name="maxRange" value="5.0"/>
        <param name="maxUrange" value="4.5"/>
        <param name="sigma" value="0.05"/>
        <param name="kernelSize" value="1"/>
        <param name="lstep" value="0.05"/>
        <param name="astep" value="0.05"/>
        <param name="iterations" value="5"/>
        <param name="lsigma" value="0.075"/>
        <param name="ogain" value="3.0"/>
        <param name="lskip" value="0"/>
        <param name="srr" value="0.01"/>
        <param name="srt" value="0.02"/>
        <param name="str" value="0.01"/>
        <param name="stt" value="0.02"/>
        <param name="linearUpdate" value="0.5"/>
        <param name="angularUpdate" value="0.436"/>
        <param name="temporalUpdate" value="-1.0"/>
        <param name="resampleThreshold" value="0.5"/>
        <param name="particles" value="80"/>
        <param name="xmin" value="-1.0"/>
        <param name="ymin" value="-1.0"/>
        <param name="xmax" value="1.0"/>
        <param name="ymax" value="1.0"/>
        <param name="delta" value="0.05"/>
        <param name="llsamplerange" value="0.01"/>
        <param name="llsamplestep" value="0.01"/>
        <param name="lasamplerange" value="0.005"/>
        <param name="lasamplestep" value="0.005"/>
        <remap from="scan" to="$(arg scan_topic)"/>
    </node>
  // 保存的rviz配置文件
    <node pkg="rviz" type="rviz" name="rviz" args="-d $(find mbot_navigation)/rviz/map.rviz"/>
</launch>

(4)连同mbot_gazebo,一起编译运行

cd ~/catkin_ws
catkin_make -DCATKIN_WHITELIST_PACKAGES="mbot_navigation;mbot_gazebo"
source devel/setup.bash
// 打开仿真环境
roslaunch mbot_gazebo mbot_gazebo.launch
//再开一个窗口,打开gmapping
roslaunch mbot_navigation gmapping.launch
// 控制机器人行动,进行建图
roslaunch mbot_gazebo mbot_teletop.launch
// 建图完成后,新开窗口,执行map_server,保存生成的地图
cd ~/catkin_ws/src/mbot_navigation/maps
rosrun map_server map_saver -f gmapping_save

最终保存下来的地图

总结

在github上面的访问地址:https://github.com/Jieshoudaxue/ros_senior/tree/main/mbot_navigation/config/move_base

代码示例:

#include <ros/ros.h>
#include <list>
#include <geometry_msgs/Pose.h>
#include <move_base_msgs/MoveBaseAction.h>
#include <actionlib/client/simple_action_client.h>
geometry_msgs::Pose createPose(double px, double py, double pz, double ox, double oy, double oz, double ow) {
    geometry_msgs::Pose pose;
    pose.position.x = px;
    pose.position.y = py;
    pose.position.z = pz;
    pose.orientation.x = ox;
    pose.orientation.y = oy;
    pose.orientation.z = oz;
    pose.orientation.w = ow;
    return pose;  
}
int main(int argc, char** argv) {
  ros::init(argc, argv, "move_test");
  actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> move_base_client("move_base", true);
  ROS_INFO("Waiting for move_base action server...");  
  move_base_client.waitForServer();
  ROS_INFO("connected to move base server");
  std::vector<geometry_msgs::Pose> target_list;
  target_list.push_back(createPose(6.543, 4.779, 0.000, 0.000, 0.000, 0.645, 0.764));
  target_list.push_back(createPose(5.543, -4.779, 0.000, 0.000, 0.000, 0.645, 0.764));
  target_list.push_back(createPose(-5.543, 4.779, 0.000, 0.000, 0.000, 0.645, 0.764));
  target_list.push_back(createPose(-5.543, -4.779, 0.000, 0.000, 0.000, 0.645, 0.764));
  for (uint8_t i = 0; i < target_list.size(); i ++) {
    ros::Time start_time = ros::Time::now();
    ROS_INFO("going to %u goal, position: (%f, %f)", i, target_list[i].position.x, target_list[i].position.y);
    move_base_msgs::MoveBaseGoal goal;
    goal.target_pose.header.frame_id = "map";
    goal.target_pose.header.stamp = ros::Time::now();
    goal.target_pose.pose = target_list[i];
    move_base_client.sendGoal(goal);
    move_base_client.waitForResult();
    if (move_base_client.getState() == actionlib::SimpleClientGoalState::SUCCEEDED) {
      ros::Duration running_time =  ros::Time::now() - start_time;
      ROS_INFO("go to %u goal succeeded, running time %f sec", i, running_time.toSec());
    } else {
      ROS_INFO("goal failed");
    }
  }
  return 0;
}

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
YOLO-specific modules
Usage:
    $ python path/to/models/yolo.py --cfg yolov5s.yaml
"""
import argparse
import sys
from copy import deepcopy
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd())  # relative
from models.common import *
from models.experimental import *
from utils.autoanchor import check_anchor_order
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync
try:
    import thop  # for FLOPs computation
except ImportError:
    thop = None
class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter
    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))
        return x if self.training else (torch.cat(z, 1), x)
    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid
class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict
        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)
        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')
    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # augmented inference, None
        return self._forward_once(x, profile, visualize)  # single-scale inference, train
    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train
    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x
    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p
    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y
    def _profile_one_layer(self, m, x, dt):
        c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
    def _print_biases(self):
        m = self.model[-1]  # Detect() module
        for mi in m.m:  # from
            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
            LOGGER.info(
                ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
    # def _print_weights(self):
    #     for m in self.model.modules():
    #         if type(m) is Bottleneck:
    #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights
    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self
    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)
    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self
def parse_model(d, ch):  # model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass
        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)
            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Detect:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]
        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--profile', action='store_true', help='profile model speed')
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
    opt = parser.parse_args()
    opt.cfg = check_yaml(opt.cfg)  # check YAML
    print_args(FILE.stem, opt)
    device = select_device(opt.device)
    # Create model
    model = Model(opt.cfg).to(device)
    model.train()
    # Profile
    if opt.profile:
        img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
        y = model(img, profile=True)
    # Test all models
    if opt.test:
        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
            try:
                _ = Model(cfg)
            except Exception as e:
                print(f'Error in {cfg}: {e}')
    # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
    # from torch.utils.tensorboard import SummaryWriter
    # tb_writer = SummaryWriter('.')
    # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
    # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), [])  # add model graph

 

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
相关文章
|
算法 机器人 定位技术
ROS中阶笔记(八):机器人SLAM与自主导航—机器人自主导航
ROS中阶笔记(八):机器人SLAM与自主导航—机器人自主导航
1151 0
ROS中阶笔记(八):机器人SLAM与自主导航—机器人自主导航
|
3月前
|
机器学习/深度学习 传感器 算法
深度学习之基于视觉的机器人导航
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。
175 5
移动机器人和UGV的自主导航(Matlab代码&Simulink)
移动机器人和UGV的自主导航(Matlab代码&Simulink)
|
8月前
|
传感器 算法 机器人
植保机器人环境感知地理定位与导航
植保机器人环境感知地理定位与导航
102 4
|
8月前
|
传感器 机器学习/深度学习 算法
植保机器人自主导航
植保机器人自主导航
83 1
|
传感器 算法 机器人
获取机器人turtlebot3 在gazebo 中仿真导航时的位姿真值
获取机器人turtlebot3 在gazebo 中仿真导航时的位姿真值
554 0
|
机器学习/深度学习 传感器 Ubuntu
ubuntu16.04下ROS操作系统学习笔记(八)机器人SLAM与 Gmapping-Hector_slam-Cartographer--ORB_SLAM(下)
ubuntu16.04下ROS操作系统学习笔记(八)机器人SLAM与 Gmapping-Hector_slam-Cartographer--ORB_SLAM(下)
376 0
|
存储 传感器 编解码
ubuntu16.04下ROS操作系统学习笔记(八)机器人SLAM与 Gmapping-Hector_slam-Cartographer--ORB_SLAM(上)
ubuntu16.04下ROS操作系统学习笔记(八)机器人SLAM与 Gmapping-Hector_slam-Cartographer--ORB_SLAM
171 0
|
传感器 算法 机器人
ROS中阶笔记(七):机器人SLAM与自主导航—SLAM功能包的使用(下)
ROS中阶笔记(七):机器人SLAM与自主导航—SLAM功能包的使用
680 0
ROS中阶笔记(七):机器人SLAM与自主导航—SLAM功能包的使用(下)
|
算法 机器人 定位技术
ROS中阶笔记(七):机器人SLAM与自主导航—SLAM功能包的使用(上)
ROS中阶笔记(七):机器人SLAM与自主导航—SLAM功能包的使用
631 0
ROS中阶笔记(七):机器人SLAM与自主导航—SLAM功能包的使用(上)

热门文章

最新文章